Exploiting Highly Concurrent Computers for Physics
DOI: 10.1063/1.881114
Computational physics—that is, the use of computers to solve problems by simulating theoretical models—is part of a new methodology that has taken its place alongside theory and experiment during the last 50 years or so. Computer simulations permit one to study microscopic properties and their macroscopic consequences in a host of problems that may be inaccessible to direct experimental study or too complex for theoretical analysis. Thus computers have become laboratories for experimenting with theories. The growth of computational physics has been fueled by the explosion in the availability of relatively cheap and powerful computers—and, for just that reason, the field is utterly dependent for its good health on continued advances in computer technology.
References
1. C. L. Seitz, J. Matisoo, PHYSICS TODAY, May 1984, page 38.
2. C. A. R. Hoare, Communicating Sequential Processes, Prentice‐Hall, Englewood Cliffs, N.J. (1984).
3. R. P. Feynman, A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw‐Hill, New York (1965).
4. K. G. Wilson, Phys. Rev. D 10, 2445 (1974). https://doi.org/PRVDAQ
K. G. Wilson, in New Phenomena in Subnuclear Physics, A. Zichichi, ed., Plenum, New York (1977).5. K. C. Bowler, C. B. Chalmers, R. D. Kenway, D. Roweth, D. Stephenson, Nucl. Phys. B, to be published; available as Edinburgh Univ. preprint 87/403.
6. See the review by R. H. Swendsen in Statistical and Particle Physics: Common Problems and Techniques, K. C. Bowler, A. J. McKane, eds., SUSSP Publications, Edinburgh (1984), p. 155.
7. G. S. Pawley, R. H. Swendsen, D. J. Wallace, K. G. Wilson, Phys. Rev. B 29, 4030 (1984).https://doi.org/PRBMDO
8. K. G. Wilson, J. B. Kogut, Phys. Rep. 12C, 75 (1974).
9. G. S. Pawley, G. W. Thomas, Phys. Rev. Lett. 48, 410 (1982).https://doi.org/PRLTAO
10. M. T. Dove, B. M. Powell, G. S. Pawley, L. S. Bartell, in preparation;
nmr result sare reported by S. K. Garg, J. Chem. Phys. 66, 2517 (1977).https://doi.org/JCPSA611. S. Wolfram, J. Stat. Phys. 45, 471 (1986). https://doi.org/JSTPBS
U. Frisch, D. d’Humieres, B. Hasslacher, P. Lallemand, Y. Pomeau, J.‐P. Rivet, in Proc. Wksp. Modern Approaches to Large Nonlinear Systems, Santa Fe 1986, to appear in J. Stat. Phys.12. U. Frisch, B. Hasslacher, Y. Pomeau, Phys. Rev. Lett. 56, 1505 (1986).https://doi.org/PRLTAO
13. J. J. Hopfield, Proc. Natl. Acad. Sci. USA 79, 2554 (1982).https://doi.org/PNASA6
14. See, for example, articles in G. E. Hinton, J. A. Anderson, eds., Parallel Models of Associated Memory, Lawrence Erlbaum, Hillsdale, N.J. (1981);
D. E. Rumelhart, J. L. McClelland, eds., Parallel Distributed Processing, vols. 1 and 2, MIT P., Cambridge, Mass. (1986);
J. S. Denker, ed., Neural Networks for Computing, AIP Conf. Proc. 151, AIP, New York (1986).15. B. M. Forrest, D. Roweth, N. Stroud, D. J. Wallace, G. V. Wilson, to be published in The Computer Journal, available as Edinburgh Univ. preprint 87/ 414, and references therein.
16. S. Geman, D. Geman, IEEE Trans. Pattern Anal. Machine Intelligence PAMI‐5, 721 (1984).https://doi.org/ITPIDJ
17. J. J. Hopfield, D. W. Tank, Biol. Cybern. 52, 141 (1985).https://doi.org/BICYAF
More about the Authors
Ken C. Bowler. University of Edinburgh.
Alastair D. Bruce. University of Edinburgh.
Richard D. Kenway. University of Edinburgh.
G. Stuart Pawley. University of Edinburgh.
David J. Wallace. University of Edinburgh.