Discover
/
Article

Entropy in nonequilibrium statistical mechanics

SEP 01, 1966
Statistical mechanics aims at deriving from first principles an entropy theorem that guarantees approach to thermodynamic equilibrium. The theory for dilute gases initiated by Boltzmann and formalized by Bogolyubov has been recently completed. But efforts to include the three‐particle interactions in gases that are dense encounter intense difficulties.
Arnold H. Kritz
Guido Sandri

SINCE ANCIENT TIMES describing the behavior of macroscopic matter in terms of dynamic principles that govern its microscopic constituents has fascinated physicists. Foundations of the modern understanding were laid by Ludwig Boltzmann in the latter part of the 19th century. From physical arguments concerning the probable number of binary collisions (the Stosszahlansatz based on the principle of molecular chaos), Boltzmann deduced a “kinetic” equation satisfied by the probability distribution function.

This article is only available in PDF format

References

  1. 1. L. Boltzmann, Lectures on Gas Theory, University of California Press, Berkeley (1964).

  2. 2. M. Lewis, Phys. Rev. 134A, 1410 (1964).https://doi.org/PHRVAO

  3. 3. P. Ehrenfest, T. Ehrenfest, The Conceptual Foundations of the Statistical Approach hi Mechanics, Cornell University Press, Ithaca, N.Y. (1959).

  4. 4. N. Bogolyubov, Problems of a Dynamical Theory in Statistical Physics, Moscow (1946), English translation by E. Gora in Studies in Statistical Mechanics, vol. 1 (J. deBoer, G. Uhlenbeck, eds.) North‐Holland Publishing Co., Amsterdam (1962).

  5. 5. G. Uhlenbeck, PHYSICS TODAY 13, no. 7, 16 (1960).https://doi.org/PHTOAD

  6. 6. J. Jeans, Kinetic Theory of Gases, Cambridge University Press, London (1946);
    S. Chapman, T. Cowling, The Mathematical Theory of Nonuniform Gases, Cambridge University Press, London (1958);
    J. Hirschfelder, C. Curtiss, R. Bird, Molecular Theory of Gases and Liquids, John Wiley and Sons, New York (1954).

  7. 7. S. Choh, G. Uhlenbeck, The Kinetic Theory of Phenomena in Dense Gases, University of Michigan, Navy Theoretical Physics Contract No. NONR 1224 (15) (1958);
    D. Hoffman, C. Curtiss, Phys. Fluids 8, 890 (1965).https://doi.org/PFLDAS

  8. 8. G. Sandri, The New Foundations of Statistical Dynamics, mimeographed Rutgers lectures (1961–62);
    G. Sandri, Ann. Phys. (N.Y.) 24, 332 (1963); https://doi.org/APNYA6
    G. Sandri, 24, 380 (1963).https://doi.org/APNYA6 , Ann. Phys. (N.Y.)

  9. 9. H. Grad, Comm. Pure App. Math. 14, 323 (1961); https://doi.org/CPMAMV
    N. Van Kampen, Physica 25, 1294 (1959).https://doi.org/PHYSAG

  10. 10. R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).https://doi.org/JUPSAU

  11. 11. J. van Leeuwen, A. Weijland, Phys. Letters (to appear, 1966);
    M. Green, J. Chem. Phys. 20, 1281 (1952); https://doi.org/JCPSA6
    M. Green, 22, 398 (1954); https://doi.org/JCPSA6 , J. Chem. Phys.
    J. McLennan, Phys. Letters 7, 332 (1963).https://doi.org/PHLTAM

  12. 12. J. McCune, G. Sandri, E. Frieman in Rarefied Gas Dynamics, vol. 1, (J. Laurmann, ed.), Academic Press, New York (1963);
    G. Sandri, The Supersecularities in Weak Coupling Kinetic Theory, ARAP (Aeronautical Research Associates of Princeton) report 46, (1963);
    J. Weinstock, Phys. Rev. 132, 454 (1963); https://doi.org/PHRVAO
    G. Sandri, Nuovo Cimento 31, 1131 (1964); https://doi.org/NUCIAD
    S. Fujita, Phys. Letters 2, 300 (1964); https://doi.org/PHLTAM
    C. Su, Phys. Fluids 7, 1227 (1964); https://doi.org/PFLDAS
    E. Cohen, J. Dorfman, Phys. Letters 16, 124 (1965); https://doi.org/PHLTAM
    J. Sengers, Phys. Rev. Letters 15, 515 (1965); https://doi.org/PRLTAO
    K. Kawasaki, I. Oppenheim, Phys. Rev. 139A, 1763 (1965); https://doi.org/PHRVAO
    G. Sandri, “The Physical Foundations of Modern Kinetic Theory” in Proceedings of the Symposium on the Dynamics of Fluids and Plasmas (dedicated to J. Burgers), (University of Maryland, 1965) (S. Pai, ed.) Academic Press, New York (1966);
    L. Haines, J. Dorfman, M. Ernst, Phys. Rev. 144, 207 (1966).https://doi.org/PHRVAO

  13. 13. R. Balescu, Phys. Fluids 3, 52 (1960); https://doi.org/PFLDAS
    A. Lenard, Ann. Phys. (N.Y.) 10, 390 (1960); https://doi.org/APNYA6
    N. Rostoker, M. Rosenbluth, Phys. Fluids 3, 1 (1960); https://doi.org/PFLDAS
    T. Dupree, Phys. Fluids 4, 696 (1961).https://doi.org/PFLDAS

  14. 14. A. Lenard, private communication;
    S. Misawa, Phys. Rev. Letters 13, 337a (1964).https://doi.org/PRLTAO

  15. 15. G. Sandri, R. Sullivan, A. Kritz, F. Schatzman, Statistical Mechanical Theory of Dense Plasmas, ARAP report 74 (1965).

  16. 16. L. Van Hove, N. Hugenholtz, L. Howland, Quantum Theory of Manyparticle Systems, W. Benjamin, New York (1961);
    M. Gell‐Mann, K. Brueckner, Phys. Rev. 106, 364 (1957).https://doi.org/PHRVAO

  17. 17. I. Prigogine, Nonequilibrium Statistical Mechanics, Interscience, New York (1962);
    J. Stecki, Phys. Fluids 7, 33 (1964).https://doi.org/PFLDAS

  18. 18. P. Goldberg, G. Sandri, to be published.

  19. 19. C. Oberman, A. Ron, J. Dawson, Phys. Fluids 5, 1514 (1962); https://doi.org/PFLDAS
    C. Wu, E. Klevans in Proceedings of the 6th International Conference on Ionization Phenomena in Gases, SERMA, Paris (1964).

  20. 20. E. Frieman, J. Math. Phys. 4, 410 (1963); https://doi.org/JMAPAQ
    J. McCune, T. Morse, G. Sandri, in Rarefied Gas Dynamics, vol. 1, op cit ref. 12;
    D. Book, MATT report 274, Princeton University (1964);
    D. Frank, D. Pfirsch, S. Priess, Naturforsch. 20a, 147 (1965);
    D. Montgomery, D. Tidman, Phys. Fluids 2, 242 (1964); https://doi.org/PFLDAS
    D. Montgomery, Connection between the Bogolyubov and the Frieman and Sandri Methods, preprint (1965);
    P. Schram, Euratom report Eur. 19O5.e (1964).

  21. 21. J. Kirkwood, J. Chem. Phys. 14, 180 (1946).https://doi.org/JCPSA6

  22. 22. G. Sandri, A New Fundamental Principle in Kinetic Theory, ARAP report 37 (1962);
    Bull. Am. Phys. Soc. 8, 151 (1963); https://doi.org/BAPSA6
    B. Fried, H. Wyld, Phys. Rev. 122, 1 (1961); https://doi.org/PHRVAO
    E. Ozizmir, K. Imre, Phys. Fluids 9, 1065 (1966).https://doi.org/PFLDAS

  23. 23. F. Engelman, G. Sandri, unpublished.

  24. 24. E. Frieman, R. Goldman, private communication to be published;
    G. V. Ramanathan, G. Sandri, to be published;
    M. Green, R. Piccirelli, Phys. Rev. 132, 1388 (1963).https://doi.org/PHRVAO

  25. 25. J. Hubbard, Proc. Roy. Soc. (London) A261, 371 (1961); https://doi.org/PRLAAZ
    D. Baldwin, Phys. Fluids 5, 1523 (1962); https://doi.org/PFLDAS
    G. Sandri, Phys. Rev. Letters 11, 178 (1963); https://doi.org/PRLTAO
    J. Weinstock, Phys. Rev. 132, 454 (1963); https://doi.org/PHRVAO
    E. Frieman, PHYSICS TODAY 15, no. 12, 28 (1962).https://doi.org/PHTOAD

  26. 26. E. Boldt, G. Sandri, Phys. Rev. 135B, 1086 (1964).https://doi.org/PHRVAO

  27. 27. G. Sandri, Nuovo Cimento 36, 67 (1965); https://doi.org/NUCIAD
    G. Sandri, R. Sullivan, Nuovo Cimento 37, 1799 (1965); https://doi.org/NUCIAD
    G. Sandri, Uniformization of Asymptotic Expansions, paper presented at 2d Symposium on Nonlinear Partial Differential Equations (University of Delaware, 1965) (proceedings published by Academic Press, New York, 1965, W. Ames, ed.);
    M. Lighthill, Phil. Mag. 40, 1179 (1949); https://doi.org/PHMAA4
    M. Van Dyke, Perturbation Methods in Fluid Dynamics, Academic Press, New York (1964).

  28. 28. W. Thurston, G. Sandri, Classical Hard‐sphere Three‐body Problem, Bull. Am. Phys. Soc. 9, 386 (1964); https://doi.org/BAPSA6
    G. Sandri, R. Sullivan, P. Norem, Phys. Rev. Letters 13, 743 (1964); https://doi.org/PRLTAO
    G. Sandri, R. Sullivan, Notices Am. Math. Soc. 12, 215 (1965); https://doi.org/AMNOAN
    D. Foch, private communication;
    G. Sandri, A. Kritz, An Approach to the N‐body Problem with Hard Sphere Interaction, ARAP report 86 (1966) (to be published in Phys. Rev.);
    T. Murphy, to be published.

  29. 29. P. Woodrow, R. Sullivan, G. Sandri, SIAM Review 7, 620 (1965).https://doi.org/SIREAD

  30. 30. G. Sandri, On the Relationship between the Single Relaxation Time Equation and Liouville’s Theorem, ARAP report 80 (1966).

  31. 31. P. Bhatnager, E. Gross, M. Krook, Phys. Rev. 94, 511 (1954); https://doi.org/PHRVAO
    H. Grad in Handbuch der Physik, vol. 12, Springer‐Verlag, Berlin (1957);
    E. Gross, M. Krook, Phys. Rev. 102, 593 (1956); https://doi.org/PHRVAO
    N. Rott, Phys. Fluids 7, 559 (1964).https://doi.org/PFLDAS

  32. 32. W. Pauli, Probleme der Modernen Physik, S. Hirzel, Leipzig (1928);
    I. Oppenheim, K. Shuler, Phys. Rev. 138B, 1008 (1965); https://doi.org/PHRVAO
    G. Sandri, Nuovo Cimento 32, 985 (1964); https://doi.org/NUCIAD
    G. Sandri, 36, 309 (1965); https://doi.org/NUCIAD , Nuovo Cimento
    R. Zwanzig, Physica 30, 1109 (1964).https://doi.org/PHYSAG

  33. 33. R. Ong, paper T4 at annual meeting of Plasma Physics Division, American Physical Society, November 1964.

  34. 34. G. Uhlenbeck, Lectures on the Statistical Mechanics of Nonequilibrium Phenomena (unpublished lecture notes), University of Michigan.

  35. 35. G. Sandri, Kinetic Models for Gaseous Mixtures, ARAP note 62‐4 (1962);
    G. Sandri, A. Kritz, F. Schatzman, Kinetic Thermodynamics, ARAP report 78 (1965) (to be published).

  36. 36. J. Luttinger, private communication.

More about the Authors

Arnold H. Kritz. Aeronautical Research Associates, Princeton University.

Guido Sandri. Aeronautical Research Associates, Princeton University.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1966_09.jpeg

Volume 19, Number 9

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.