Discover
/
Article

Entangled polymers

JUN 01, 1983
A theory based on the snake‐like motion by which chains of monomers move in the melt is enhancing our understanding of rheology, diffusion, polymer–polymer welding, chemical kinetics and biotechnology.
Pierre‐Gilles de Gennes

Most of us have played with lumps of “silly putty,” the strange substance shown in the photographs on page 34. Given a bit of time, this material flows like a viscous liquid. Forced to respond quickly, it bounces like rubber. We can trace this “viscoelastic” behavior, which shows up in all polymer melts, to the knotting of the chains of “monomers” that make up the polymers. Shearing forces tend to undo certain knots, but this takes a finite time τ. In a time greater than τ the original knots fade out, and the melt flows. Over shorter times the original knots are all present, and the melt behaves like an elastic network.

This article is only available in PDF format

References

  1. 1. J. D. Ferry, Viscoelastic properties of polymers, Wiley, New York (1970);
    W. Graessley, Adv. Polymer Science 16, 1 (1974); https://doi.org/APSIDK
    J. Walker, Sci. Am., November 1978, page 186.

  2. 2. For a physical approach to the classification of knots, see R. Ball, M. Mehta, Journ. Phys. (Paris) 42, 1193 (1981).https://doi.org/JOPQAG

  3. 3. P. G. de Gennes, J. Chem. Phys. 55, 572 (1971); https://doi.org/JCPSA6
    L. Leger, P. G. de Gennes, Ann. Rev. Phys. Chem. 33, 49 (1982).

  4. 4. S. F. Edwards, Proc. Phys. Soc. Lon. 92, 9 (1967).https://doi.org/PPSOAU

  5. 5. J. M. Deutsch, Phys. Rev. Lett. 49, 226 (1982).https://doi.org/PRLTAO

  6. 6. M. Doi, S. F. Edwards, Faraday Soc. Trans. 74, 1789, 1802 (1978).

  7. 7. P. Flory, Principles of Polymer Chemistry, Cornell U.P., Ithaca (1953).
    P. G. de Gennes, Scaling Concepts in Polymer Physics, Cornell U.P., Ithaca (1979).

  8. 8. J. Klein, B. Briscoe, Proc. Roy. Soc. (London) A 365, 53 (1979).

  9. 9. L. Leger, H. Hervet, F. Rondelez, Phys. Rev. Lett. 42, 1681 (1979).https://doi.org/PRLTAO

  10. 10. P. Callaghan, D. Pinder, Macromolecules 13, 1085 (1980); https://doi.org/MAMOBX
    P. Callaghan, D. Pinder, 14, 1334 (1981).

  11. 11. M. Adam, M. Delsanti, Macromolecules 10, 1229 (1977).https://doi.org/MAMOBX

  12. 12. F. Brochard, P. G. de Gennes, Physiochemical Hydrodynamics, to be published.

  13. 13. See, for instance, I. Mita, K. Horie, M. Takeda, Macromolecules 14, 1428 (1981); https://doi.org/MAMOBX
    A. Redpath, M. Winnik, Ann. N. Y. Acad. Sci. 336, 75 (1981).https://doi.org/ANYAA9

  14. 14. P. Gilmore, R. Farabella, R. Laurence, Macromolecules 13, 880 (1980); https://doi.org/MAMOBX
    P. G. de Gennes, C. R. Acad. Sci. (Paris), 292 II, 1505 (1981).

  15. 15. K. Jud, H. Kausch, J. G. Williams, J. Materials Sci. 16, 204 (1981).https://doi.org/JMTSAS

  16. 16. P. G. de Gennes in Microscopic Aspects of Adhesion and Lubrication, J. M. Georges, ed., Elsevier, Amsterdam (1982), page 355;
    Detailed calculations on the interdigitation profile are given by M. Tirrel, S. Prager, J. Chem. Phys. 10, 5194 (1981).https://doi.org/JCPSA6

  17. 17. R. P. Wool, ACS Polymer Preprints 23 (2), 62 (1982).

  18. 18. C. P. Bean, H. Hervet, Bull. Am. Phys. Soc. 28, 444 (1983); https://doi.org/BAPSA6
    submitted to Biopolymers.

  19. 19. P. G. de Gennes, C. R. Acad. Sci. (Paris) 294 II, 827 (1982).

  20. 20. S. Alexander, J. Bernasconi, W. Schneider, R. Orbach, in Physics in One Dimension, Springer‐Verlag, New York, solid state series 23 (1981), page 277.

  21. 21. F. Brochard, J. Jouffroy, P. Levinson, Macromolecules, to be published.

More about the authors

Pierre‐Gilles de Gennes, College de France.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1983_06.jpeg

Volume 36, Number 6

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.