Entangled polymers
DOI: 10.1063/1.2915700
Most of us have played with lumps of “silly putty,” the strange substance shown in the photographs on page 34. Given a bit of time, this material flows like a viscous liquid. Forced to respond quickly, it bounces like rubber. We can trace this “viscoelastic” behavior, which shows up in all polymer melts, to the knotting of the chains of “monomers” that make up the polymers. Shearing forces tend to undo certain knots, but this takes a finite time τ. In a time greater than τ the original knots fade out, and the melt flows. Over shorter times the original knots are all present, and the melt behaves like an elastic network.
References
1. J. D. Ferry, Viscoelastic properties of polymers, Wiley, New York (1970);
W. Graessley, Adv. Polymer Science 16, 1 (1974); https://doi.org/APSIDK
J. Walker, Sci. Am., November 1978, page 186.2. For a physical approach to the classification of knots, see R. Ball, M. Mehta, Journ. Phys. (Paris) 42, 1193 (1981).https://doi.org/JOPQAG
3. P. G. de Gennes, J. Chem. Phys. 55, 572 (1971); https://doi.org/JCPSA6
L. Leger, P. G. de Gennes, Ann. Rev. Phys. Chem. 33, 49 (1982).4. S. F. Edwards, Proc. Phys. Soc. Lon. 92, 9 (1967).https://doi.org/PPSOAU
5. J. M. Deutsch, Phys. Rev. Lett. 49, 226 (1982).https://doi.org/PRLTAO
6. M. Doi, S. F. Edwards, Faraday Soc. Trans. 74, 1789, 1802 (1978).
7. P. Flory, Principles of Polymer Chemistry, Cornell U.P., Ithaca (1953).
P. G. de Gennes, Scaling Concepts in Polymer Physics, Cornell U.P., Ithaca (1979).8. J. Klein, B. Briscoe, Proc. Roy. Soc. (London) A 365, 53 (1979).
9. L. Leger, H. Hervet, F. Rondelez, Phys. Rev. Lett. 42, 1681 (1979).https://doi.org/PRLTAO
10. P. Callaghan, D. Pinder, Macromolecules 13, 1085 (1980); https://doi.org/MAMOBX
P. Callaghan, D. Pinder, 14, 1334 (1981).11. M. Adam, M. Delsanti, Macromolecules 10, 1229 (1977).https://doi.org/MAMOBX
12. F. Brochard, P. G. de Gennes, Physiochemical Hydrodynamics, to be published.
13. See, for instance, I. Mita, K. Horie, M. Takeda, Macromolecules 14, 1428 (1981); https://doi.org/MAMOBX
A. Redpath, M. Winnik, Ann. N. Y. Acad. Sci. 336, 75 (1981).https://doi.org/ANYAA914. P. Gilmore, R. Farabella, R. Laurence, Macromolecules 13, 880 (1980); https://doi.org/MAMOBX
P. G. de Gennes, C. R. Acad. Sci. (Paris), 292 II, 1505 (1981).15. K. Jud, H. Kausch, J. G. Williams, J. Materials Sci. 16, 204 (1981).https://doi.org/JMTSAS
16. P. G. de Gennes in Microscopic Aspects of Adhesion and Lubrication, J. M. Georges, ed., Elsevier, Amsterdam (1982), page 355;
Detailed calculations on the interdigitation profile are given by M. Tirrel, S. Prager, J. Chem. Phys. 10, 5194 (1981).https://doi.org/JCPSA617. R. P. Wool, ACS Polymer Preprints 23 (2), 62 (1982).
18. C. P. Bean, H. Hervet, Bull. Am. Phys. Soc. 28, 444 (1983); https://doi.org/BAPSA6
submitted to Biopolymers.19. P. G. de Gennes, C. R. Acad. Sci. (Paris) 294 II, 827 (1982).
20. S. Alexander, J. Bernasconi, W. Schneider, R. Orbach, in Physics in One Dimension, Springer‐Verlag, New York, solid state series 23 (1981), page 277.
21. F. Brochard, J. Jouffroy, P. Levinson, Macromolecules, to be published.
More about the Authors
Pierre‐Gilles de Gennes. College de France.