Discover
/
Article

Electronics with superconducting junctions

AUG 01, 1971
As ultracold becomes easier to maintain, highly sensitive devices based on the Josephson effects may find wider and wider use to measure tiny high‐frequency voltages and magnetic fields.
John Clarke

Josephson tunneling, an effect predicted and discovered within the last decade, has already formed the basis of a new technology. The “Josephson devices” are ultrasensitive electronic measuring devices that operate at liquid‐helium temperatures (1–4K) and exploit the macroscopic‐scale quantum properties of superconducting junctions. They have been used to measure, for example, smaller low‐frequency voltages and magnetic fields than can be measured with any other methods, and are also being investigated as possible high‐frequency detectors and mixers, as thermometers and as computer elements. One of the most important applications of the Josephson effect has been in the precision measurement of e/h in an experiment that avoids any assumptions from quantum electrodynamics (QED); results from this experiment give a convenient and accurate way to express the standard of electromotive force.

This article is only available in PDF format

References

  1. 1. B. D. Josephson in Superconductivity (R. D. Parks, ed.), Marcel Dekker, New York (1969);
    P. W. Anderson in Progress in Low Temperature Physics vol. 5 (C. J. Gorter, ed.), North‐Holland, Amsterdam (1967).

  2. 2. J. Bardeen, L. N. Cooper, J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).https://doi.org/PHRVAO

  3. 3. B. S. DeaverJr, W. M. Fairbank, Phys. Rev. Lett. 7, 43 (1961); https://doi.org/PRLTAO
    R. Doll, M. Nabauer, Phys. Rev. Lett. 7, 51 (1961).https://doi.org/PRLTAO

  4. 4. B. D. Josephson, Phys. Lett. 1, 251 (1962).https://doi.org/PHLTAM

  5. 5. B. D. Josephson, Fellowship thesis, Trinity College, Cambridge, UK (1962);
    P. W. Anderson in Lectures on the Many‐Body Problem, Ravello 1963 (E. R. Caianiello, ed.) Academic, New York (1964).

  6. 6. P. W. Anderson, J. M. Rowell, Phys. Rev. Lett. 10, 230 (1963).https://doi.org/PRLTAO

  7. 7. J. E. Zimmerman, A. H. Silver, Phys. Rev. 141, 367 (1966).https://doi.org/PHRVAO

  8. 8. H. A. Notarys, J. E. Mercereau, Proceedings of the International Conference on the Science of Superconductivity, North‐Holland, Amsterdam (1970).

  9. 9. J. Clarke, Phil. Mag. 13, 115 (1966).https://doi.org/PHMAA4

  10. 10. P. W. Anderson, A. H. Dayem, Phys. Rev. Lett. 13, 195 (1964); https://doi.org/PRLTAO
    A. H. Dayem, J. J. Wiegand, Phys. Rev. 155, 419 (1967).https://doi.org/PHRVAO

  11. 11. R. C. Jaklevic, J. Lambe, A. H. Silver, J. E. Mercereau, Phys. Rev. Lett. 12, 159 (1964).https://doi.org/PRLTAO

  12. 12. R. L. Forgacs, A. Warnick, Rev. Sci. Instr. 38, 214 (1967).https://doi.org/RSINAK

  13. 13. J. Clarke, J. L. Paterson, Bull. Am. Phys. Soc. Series II, 16, 399 (1971).

  14. 14. J. E. Zimmerman, P. Thiene, J. T. Harding, J. Appl. Phys. 41, 1572 (1970);
    J. E. Mercereau, Rev. de Phys. Appl. 5, 13 (1970);
    M. Nisenoff, Rev. de Phys. Appl. 5, 21 (1970);
    J. M. Goodkind, D. L. Stolfa, Rev. Sci. Instr. 41, 799 (1970).https://doi.org/RSINAK

  15. 15. J. E. Zimmerman, to be published in J. Appl. Phys., September 1971.

  16. 16. J. P. Gollub, M. R. Beasley, M. Tinkham, Phys. Rev. Lett. 25, 1646 (1970).https://doi.org/PRLTAO

  17. 17. physics today, May 1971, page 17.

  18. 18. J. E. Zimmerman, J. Appl. Phys. 42, 30 (1971);
    J. E. Zimmerman, N. V. Frederick (to be published).

  19. 19. J. Clarke, Phys. Rev. Lett. 21, 1566 (1968).https://doi.org/PRLTAO

  20. 20. J. Clarke, Am. J. Phys. 38, 1071 (1970).

  21. 21. D. N. Langenberg, W. H. Parker, B. N. Taylor, Phys. Rev. 150, 186 (1966).https://doi.org/AJPIAS

  22. 22. T. F. Finnegan, A. Denenstein, D. N. Langenberg, (to appear in Phys. Rev. B).

  23. 23. W. H. Parker, D. N. Langenberg, A. Denenstein, B. N. Taylor, Phys. Rev. 177, 639 (1969).https://doi.org/PHRVAO

  24. 24. E. R. Cohen, J. W. M. DuMond, Rev. Mod. Phys. 37, 537 (1965).https://doi.org/RMPHAT

  25. 25. B. N. Taylor, W. H. Parker, D. N. Langenberg, Rev. Mod. Phys. 41, 375 (1969).https://doi.org/RMPHAT

  26. 26. P. L. Richards, in Physics of II–V Compounds, vol. G, Academic, New York (to be published).

  27. 27. C. C. Grimes, P. L. Richards, S. Shapiro, J. Appl. Phys. 39, 3905 (1968).https://doi.org/JAPIAU

  28. 28. B. Ulrich in Proceedings of the 12th International Conference on Low Temperature Physics, Kyoto, Japan (1970).

  29. 29. P. L. Richards, S. A. Sterling, Appl. Phys. Lett. 14, 394 (1969).https://doi.org/APPLAB

  30. 30. C. C. Grimes, S. Shapiro, Phys. Rev. 169, 397 (1968).https://doi.org/PHRVAO

  31. 31. D. G. McDonald, A. S. Risley, J. D. Cupp, K. M. Evenson, Appl. Phys. Lett. 18, 162 (1971).https://doi.org/APPLAB

  32. 32. R. A. Kamper in Symposium on the Physics of Superconducting Devices, Charlottesville, Va., Office of Naval Research, 1967, page M1;
    R. A. Kamper, J. E. Zimmerman, J. Appl. Phys. 42, 132 (1971); https://doi.org/JAPIAU
    R. A. Kamper, J. D. Siegwarth, R. Radebaugh, J. E. Zimmerman (to be published).

  33. 33. J. Matisoo, Appl. Phys. Lett. 9, 167 (1966); https://doi.org/APPLAB
    J. Matisoo, J. Appl. Phys. 31, 2587 (1968).https://doi.org/JAPIAU

  34. 34. P. W. Anderson, R. C. Dynes, T. A. Fulton, Bull. Am. Phys. Soc. Series II, 16, 399 (1971).

  35. 35. J. Clarke, Proc. Roy. Soc. (London) A308, 447 (1969).

More about the Authors

John Clarke. University of California, Berkeley, and Lawrence Radiation Laboratory, Berkeley.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1971_08.jpeg

Volume 24, Number 8

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.