Electron Spin and Optical Coherence in Semiconductors
DOI: 10.1063/1.882695
Semiconductors are ubiquitous in device electronics because their charge distributions are easily shaped and controlled to make logic gates. Since gate switching and intercommunication rates limit device speed, efforts to improve computational power have led the semiconductor industry to push devices to ever‐shrinking sizes. Yet, as advances in this area have improved the function of today’s chip architectures, miniaturization may soon bring additional complications in the form of quantum mechanical effects. Because quantum systems tend to behave statistically, these effects will introduce unpredictable fluctuations in essential; design parameters, such as charge distribution, that will affect performance as device sizes shrink.
References
1. D. P. DiVincenzo, Science 270, 255 (1995).https://doi.org/SCIEAS
2. G. A. Prinz, Science 282, 1660 (1998).https://doi.org/SCIEAS
3. J. M. Kikkawa, D. D. Awschalom, I. P. Smorchkova, N. Samarth, Science 277, 1284 (1997). https://doi.org/SCIEAS
J. M. Kikkawa, D. D. Awschalom, Phys. Rev. Lett. 80, 4313 (1998).https://doi.org/PRLTAO4. A. P. Heberle, W. W. Rühle, K. Ploog, Phys. Rev. Lett. 72, 3887 (1994).https://doi.org/PRLTAO
5. R. M. Hannak, M. Oestreich, A. P. Heberle, W. W. Rühle, K. Köhler, Solid State Commun. 93, 313 (1995). https://doi.org/SSCOA4
M. Oestreich, W. W. Rühle, Phys. Rev. Lett. 74, 2315 (1995). https://doi.org/PRLTAO
M. Oestreich et al., Phys. Rev. B 53, 7911 (1996).https://doi.org/PRBMDO6. S. Bar‐Ad, I. Bar‐Joseph, Phys. Rev. Lett. 68, 349 (1992). https://doi.org/PRLTAO
J. J. Baumberg, D. D. Awschalom, N. Samarth, H. Luo, J. K. Furdyna, Phys. Rev. Lett. 72, 717 (1994). https://doi.org/PRLTAO
T. Amand et al., Phys. Rev. Lett. 78, 1355 (1997).https://doi.org/PRLTAO7. S. Hallstein et al., Phys. Rev. B 56, R7076 (1997).https://doi.org/PRBMDO
8. S. A. Crooker, J. J. Baumberg, F. Flack, N. Samarth, D. D. Awschalom, Phys. Rev. Lett. 77, 2814 (1996).https://doi.org/PRLTAO
9. J. M. Kikkawa, D. D. Awschatom, Nature 397, 139 (1999).https://doi.org/NATUAS
10. D. Hägele, M. Oestreich, W. W. Rühle, N. Nestle, K. Eberl, Appl. Phys. Lett. 73, 1580 (1998).https://doi.org/APPLAB
11. F. Hennenberger, S. Schmitt‐Rink, eds., Optics in Semiconductor Nanostructures, Akademie Verlag, Berlin (1993).
12. J. J. Baumberg, Current Opinion in Solid State and Materials Science 3, 181 (1998),
and references therein. A. P. Heberle, J. J. Baumberg, K. Köhler, Phys. Rev. Lett. 75, 2598 (1995).https://doi.org/PRLTAO13. Y. Nishikawa et al., Appl. Phys. Lett. 66, 839 (1995).https://doi.org/APPLAB
14. D. Birkedal, J. Shah, Phys. Rev. Lett. 81, 2372 (1998).https://doi.org/PRLTAO
15. N. H. Bonadeo et al., Science 282, 1473 (1998). https://doi.org/SCIEAS
N. H. Bonadeo et al., Phys. Rev. Lett. 81, 2759 (1998).https://doi.org/PRLTAO16. P. C. M. Planken, I. Brener, M. C. Nuss, M. S. C. Luo, S. L. Chang, Phys. Rev. B 48, 4903 (1993).https://doi.org/PRBMDO
17. A. Haché, Y. Kostoulas, R. Atanasov, J. L. P. Hughes, J. E. Sipe, H. M. van Driel, Phys. Rev. Lett. 78, 306 (1997).https://doi.org/PRLTAO
18. M. U. Wehner, M. H. Ulm, D. S. Chemla, M. Wegner, Phys. Rev. Lett. 80, 1992 (1998).https://doi.org/PRLTAO
More about the Authors
David D. Awschalom. University of California, Santa Barbara.
James M. Kikkawa. University of California, Santa Barbara.