Electron Holography: A New View of the Microscopic
DOI: 10.1063/1.881230
Holograms generally record interference patterns produced by visible light. But one can, in principle, make use of any coherent wave phenomenon. One can, for example, create a hologram by recording on film the interference pattern of an object formed with electron beams. One can then reconstruct the three‐dimensional optical image of the object by illuminating this hologram with a laser beam. This imaging technique, which is called electron holography, transforms an electron wavefront into an optical wavefront. In this way, one can exploit versatile optical techniques to do interesting and useful things that are simply not feasible with pure electron microscopes.
References
1. D. Gabor, Proc. R. Soc. London, Ser. A 197, 45 (1949). https://doi.org/PRLAAZ
D. Gabor, Proc. Phys. Soc. London, Sect. B 64, 449 (1951).https://doi.org/PPSBAP2. E. N. Leith, J. Upatnieks, J. Opt. Soc. Am. 52, 1123 (1962).https://doi.org/JOSAAH
3. A. Tonomura, T. Matsuda, J. Endo, H. Todokoro, T. Komoda, J. Electron Microsc. 28, 1 (1979).https://doi.org/JELJA7
4. M. E. Haine, T. Mulvey, J. Opt. Soc. Am. 42, 763 (1952).https://doi.org/JOSAAH
5. T. Hibi, J. Electron Microsc. 4, 10 (1956).https://doi.org/JELJA7
6. A. Tonomura, A. Fukuhara, H. Watanabe, T. Komoda, Jpn. J. Appl. Phys. 7, 295 (1968).https://doi.org/JJAPA5
7. G. Möllenstedt, H. Wahl, Naturwissenschaften 55, 340 (1968).https://doi.org/NATWAY
8. G. Möllenstedt, H. Dücker, Naturwissenschaften 42, 41 (1955).https://doi.org/NATWAY
9. G. F. Missiroli, G. Pozzi, U. Valdre, J. Phys. E 14, 649 (1981).https://doi.org/JPSIAE
10. K.‐J. Hanszen, in Advances in Electronics and Electron Physics, Vol. 59, L. Marton, ed., Academic, New York (1982), p. 1.
11. A. Tonomura, in Progress in Optics, Vol. 23, E. Wolf, ed., North‐Holland, Amsterdam (1986), p. 183.
12. A. Tonomura, Rev. Mod. Phys. 59, 639 (1987).https://doi.org/RMPHAT
13. A. V. Crewe, D. N. Eggenberger, D. N. Wall, L. N. Welter, Rev. Sci. Instrum. 39, 576 (1968).https://doi.org/RSINAK
14. A. Tonomura, J. Endo, T. Matsuda, T. Kawasaki, Am. J. Phys. 57, 117 (1989).https://doi.org/AJPIAS
15. Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959).https://doi.org/PHRVAO
16. T. T. Wu, C. N. Yang, Phys. Rev. D 12, 3845 (1975).https://doi.org/PRVDAQ
17. P. Bocchieri, A. Loinger, Nuovo Cimento A 47, 475 (1978).
18. See, for example, R. G. Chambers, Phys. Rev. Lett. 5, 3 (1960); https://doi.org/PRLTAO
G. Möllenstedt, W. Bayh, Phys. Bl. 18, 299 (1962).https://doi.org/PHBLAG19. S. M. Roy, Phys. Rev. Lett. 44, 111 (1980).https://doi.org/PRLTAO
20. See, for example, M. Peshkin, A. Tonomura, The Aharonov‐Bohm Effects, Lecture Notes in Physics Vol. 340, Springer‐Verlag, New York(1989).
21. A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, B. Yano, H. Yamada, Phys. Rev. Lett. 56, 792 (1986).https://doi.org/PRLTAO
22. A. Tonomura, T. Matsuda, J. Endo, T. Arii, K. Mihama, Phys. Rev. Lett. 44, 1430 (1980).https://doi.org/PRLTAO
23. S. Frabboni, G. Matteucci, G. Pozzi, M. Vanzi, Phys. Rev. Lett. 55, 2196 (1985).https://doi.org/PRLTAO
24. N. Osakabe, K. Yoshida, Y. Horiuchi, T. Matsuda, H. Tanabe, T. Okuwaki, J. Endo, H. Fujiwara, A. Tonomura, Appl. Phys. Lett. 42, 746 (1983).https://doi.org/APPLAB
25. T. Matsuda, S. Hasegawa, M. Igarashi, T. Kobayashi, M. Naito, H. Kajiyama, J. Endo, N. Osakabe, A. Tonomura, R. Aoki, Phys. Rev. Lett. 62, 2519 (1989).https://doi.org/PRLTAO
26. A. Tonomura, T. Matsuda, T. Kawasaki, J. Endo, N. Osakabe, Phys. Rev. Lett. 54, 60 (1985).https://doi.org/PRLTAO
27. N. Osakabe, J. Endo, T. Matsuda, A. Tonomura, A. Fukuhara, Phys. Rev. Lett. 62, 2969 (1989).https://doi.org/PRLTAO
28. H. Lichte, Ultramicroscopy 20, 293 (1986).https://doi.org/ULTRD6
More about the Authors
Akira Tonomura. Advanced Research Laboratory of Hitachi, Ltd, Saitama, Japan.