Discover
/
Article

Electron Holography: A New View of the Microscopic

APR 01, 1990
Now that coherent field‐emission electron beams are available, one can exploit the wave nature of free electrons to do holography on the atomic scale.

DOI: 10.1063/1.881230

Akira Tonomura

Holograms generally record interference patterns produced by visible light. But one can, in principle, make use of any coherent wave phenomenon. One can, for example, create a hologram by recording on film the interference pattern of an object formed with electron beams. One can then reconstruct the three‐dimensional optical image of the object by illuminating this hologram with a laser beam. This imaging technique, which is called electron holography, transforms an electron wavefront into an optical wavefront. In this way, one can exploit versatile optical techniques to do interesting and useful things that are simply not feasible with pure electron microscopes.

References

  1. 1. D. Gabor, Proc. R. Soc. London, Ser. A 197, 45 (1949). https://doi.org/PRLAAZ
    D. Gabor, Proc. Phys. Soc. London, Sect. B 64, 449 (1951).https://doi.org/PPSBAP

  2. 2. E. N. Leith, J. Upatnieks, J. Opt. Soc. Am. 52, 1123 (1962).https://doi.org/JOSAAH

  3. 3. A. Tonomura, T. Matsuda, J. Endo, H. Todokoro, T. Komoda, J. Electron Microsc. 28, 1 (1979).https://doi.org/JELJA7

  4. 4. M. E. Haine, T. Mulvey, J. Opt. Soc. Am. 42, 763 (1952).https://doi.org/JOSAAH

  5. 5. T. Hibi, J. Electron Microsc. 4, 10 (1956).https://doi.org/JELJA7

  6. 6. A. Tonomura, A. Fukuhara, H. Watanabe, T. Komoda, Jpn. J. Appl. Phys. 7, 295 (1968).https://doi.org/JJAPA5

  7. 7. G. Möllenstedt, H. Wahl, Naturwissenschaften 55, 340 (1968).https://doi.org/NATWAY

  8. 8. G. Möllenstedt, H. Dücker, Naturwissenschaften 42, 41 (1955).https://doi.org/NATWAY

  9. 9. G. F. Missiroli, G. Pozzi, U. Valdre, J. Phys. E 14, 649 (1981).https://doi.org/JPSIAE

  10. 10. K.‐J. Hanszen, in Advances in Electronics and Electron Physics, Vol. 59, L. Marton, ed., Academic, New York (1982), p. 1.

  11. 11. A. Tonomura, in Progress in Optics, Vol. 23, E. Wolf, ed., North‐Holland, Amsterdam (1986), p. 183.

  12. 12. A. Tonomura, Rev. Mod. Phys. 59, 639 (1987).https://doi.org/RMPHAT

  13. 13. A. V. Crewe, D. N. Eggenberger, D. N. Wall, L. N. Welter, Rev. Sci. Instrum. 39, 576 (1968).https://doi.org/RSINAK

  14. 14. A. Tonomura, J. Endo, T. Matsuda, T. Kawasaki, Am. J. Phys. 57, 117 (1989).https://doi.org/AJPIAS

  15. 15. Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959).https://doi.org/PHRVAO

  16. 16. T. T. Wu, C. N. Yang, Phys. Rev. D 12, 3845 (1975).https://doi.org/PRVDAQ

  17. 17. P. Bocchieri, A. Loinger, Nuovo Cimento A 47, 475 (1978).

  18. 18. See, for example, R. G. Chambers, Phys. Rev. Lett. 5, 3 (1960); https://doi.org/PRLTAO
    G. Möllenstedt, W. Bayh, Phys. Bl. 18, 299 (1962).https://doi.org/PHBLAG

  19. 19. S. M. Roy, Phys. Rev. Lett. 44, 111 (1980).https://doi.org/PRLTAO

  20. 20. See, for example, M. Peshkin, A. Tonomura, The Aharonov‐Bohm Effects, Lecture Notes in Physics Vol. 340, Springer‐Verlag, New York(1989).

  21. 21. A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, B. Yano, H. Yamada, Phys. Rev. Lett. 56, 792 (1986).https://doi.org/PRLTAO

  22. 22. A. Tonomura, T. Matsuda, J. Endo, T. Arii, K. Mihama, Phys. Rev. Lett. 44, 1430 (1980).https://doi.org/PRLTAO

  23. 23. S. Frabboni, G. Matteucci, G. Pozzi, M. Vanzi, Phys. Rev. Lett. 55, 2196 (1985).https://doi.org/PRLTAO

  24. 24. N. Osakabe, K. Yoshida, Y. Horiuchi, T. Matsuda, H. Tanabe, T. Okuwaki, J. Endo, H. Fujiwara, A. Tonomura, Appl. Phys. Lett. 42, 746 (1983).https://doi.org/APPLAB

  25. 25. T. Matsuda, S. Hasegawa, M. Igarashi, T. Kobayashi, M. Naito, H. Kajiyama, J. Endo, N. Osakabe, A. Tonomura, R. Aoki, Phys. Rev. Lett. 62, 2519 (1989).https://doi.org/PRLTAO

  26. 26. A. Tonomura, T. Matsuda, T. Kawasaki, J. Endo, N. Osakabe, Phys. Rev. Lett. 54, 60 (1985).https://doi.org/PRLTAO

  27. 27. N. Osakabe, J. Endo, T. Matsuda, A. Tonomura, A. Fukuhara, Phys. Rev. Lett. 62, 2969 (1989).https://doi.org/PRLTAO

  28. 28. H. Lichte, Ultramicroscopy 20, 293 (1986).https://doi.org/ULTRD6

More about the Authors

Akira Tonomura. Advanced Research Laboratory of Hitachi, Ltd, Saitama, Japan.

This Content Appeared In
pt-cover_1990_04.jpeg

Volume 43, Number 4

Related content
/
Article
Technical knowledge and skills are only some of the considerations that managers have when hiring physical scientists. Soft skills, in particular communication, are also high on the list.
/
Article
Professional societies can foster a sense of belonging and offer early-career scientists opportunities to give back to their community.
/
Article
Research exchanges between US and Soviet scientists during the second half of the 20th century may be instructive for navigating today’s debates on scientific collaboration.
/
Article
The Eisenhower administration dismissed the director of the National Bureau of Standards in 1953. Suspecting political interference with the agency’s research, scientists fought back—and won.
/
Article
Alternative undergraduate physics courses expand access to students and address socioeconomic barriers that prevent many of them from entering physics and engineering fields. The courses also help all students develop quantitative skills.
/
Article
Defying the often-perceived incompatibility between the two subjects, some physicists are using poetry to communicate science and to explore the human side of their work.

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.