Discover
/
Article

Electron Holography: A New View of the Microscopic

APR 01, 1990
Now that coherent field‐emission electron beams are available, one can exploit the wave nature of free electrons to do holography on the atomic scale.
Akira Tonomura

Holograms generally record interference patterns produced by visible light. But one can, in principle, make use of any coherent wave phenomenon. One can, for example, create a hologram by recording on film the interference pattern of an object formed with electron beams. One can then reconstruct the three‐dimensional optical image of the object by illuminating this hologram with a laser beam. This imaging technique, which is called electron holography, transforms an electron wavefront into an optical wavefront. In this way, one can exploit versatile optical techniques to do interesting and useful things that are simply not feasible with pure electron microscopes.

This article is only available in PDF format

References

  1. 1. D. Gabor, Proc. R. Soc. London, Ser. A 197, 45 (1949). https://doi.org/PRLAAZ
    D. Gabor, Proc. Phys. Soc. London, Sect. B 64, 449 (1951).https://doi.org/PPSBAP

  2. 2. E. N. Leith, J. Upatnieks, J. Opt. Soc. Am. 52, 1123 (1962).https://doi.org/JOSAAH

  3. 3. A. Tonomura, T. Matsuda, J. Endo, H. Todokoro, T. Komoda, J. Electron Microsc. 28, 1 (1979).https://doi.org/JELJA7

  4. 4. M. E. Haine, T. Mulvey, J. Opt. Soc. Am. 42, 763 (1952).https://doi.org/JOSAAH

  5. 5. T. Hibi, J. Electron Microsc. 4, 10 (1956).https://doi.org/JELJA7

  6. 6. A. Tonomura, A. Fukuhara, H. Watanabe, T. Komoda, Jpn. J. Appl. Phys. 7, 295 (1968).https://doi.org/JJAPA5

  7. 7. G. Möllenstedt, H. Wahl, Naturwissenschaften 55, 340 (1968).https://doi.org/NATWAY

  8. 8. G. Möllenstedt, H. Dücker, Naturwissenschaften 42, 41 (1955).https://doi.org/NATWAY

  9. 9. G. F. Missiroli, G. Pozzi, U. Valdre, J. Phys. E 14, 649 (1981).https://doi.org/JPSIAE

  10. 10. K.‐J. Hanszen, in Advances in Electronics and Electron Physics, Vol. 59, L. Marton, ed., Academic, New York (1982), p. 1.

  11. 11. A. Tonomura, in Progress in Optics, Vol. 23, E. Wolf, ed., North‐Holland, Amsterdam (1986), p. 183.

  12. 12. A. Tonomura, Rev. Mod. Phys. 59, 639 (1987).https://doi.org/RMPHAT

  13. 13. A. V. Crewe, D. N. Eggenberger, D. N. Wall, L. N. Welter, Rev. Sci. Instrum. 39, 576 (1968).https://doi.org/RSINAK

  14. 14. A. Tonomura, J. Endo, T. Matsuda, T. Kawasaki, Am. J. Phys. 57, 117 (1989).https://doi.org/AJPIAS

  15. 15. Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959).https://doi.org/PHRVAO

  16. 16. T. T. Wu, C. N. Yang, Phys. Rev. D 12, 3845 (1975).https://doi.org/PRVDAQ

  17. 17. P. Bocchieri, A. Loinger, Nuovo Cimento A 47, 475 (1978).

  18. 18. See, for example, R. G. Chambers, Phys. Rev. Lett. 5, 3 (1960); https://doi.org/PRLTAO
    G. Möllenstedt, W. Bayh, Phys. Bl. 18, 299 (1962).https://doi.org/PHBLAG

  19. 19. S. M. Roy, Phys. Rev. Lett. 44, 111 (1980).https://doi.org/PRLTAO

  20. 20. See, for example, M. Peshkin, A. Tonomura, The Aharonov‐Bohm Effects, Lecture Notes in Physics Vol. 340, Springer‐Verlag, New York(1989).

  21. 21. A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, B. Yano, H. Yamada, Phys. Rev. Lett. 56, 792 (1986).https://doi.org/PRLTAO

  22. 22. A. Tonomura, T. Matsuda, J. Endo, T. Arii, K. Mihama, Phys. Rev. Lett. 44, 1430 (1980).https://doi.org/PRLTAO

  23. 23. S. Frabboni, G. Matteucci, G. Pozzi, M. Vanzi, Phys. Rev. Lett. 55, 2196 (1985).https://doi.org/PRLTAO

  24. 24. N. Osakabe, K. Yoshida, Y. Horiuchi, T. Matsuda, H. Tanabe, T. Okuwaki, J. Endo, H. Fujiwara, A. Tonomura, Appl. Phys. Lett. 42, 746 (1983).https://doi.org/APPLAB

  25. 25. T. Matsuda, S. Hasegawa, M. Igarashi, T. Kobayashi, M. Naito, H. Kajiyama, J. Endo, N. Osakabe, A. Tonomura, R. Aoki, Phys. Rev. Lett. 62, 2519 (1989).https://doi.org/PRLTAO

  26. 26. A. Tonomura, T. Matsuda, T. Kawasaki, J. Endo, N. Osakabe, Phys. Rev. Lett. 54, 60 (1985).https://doi.org/PRLTAO

  27. 27. N. Osakabe, J. Endo, T. Matsuda, A. Tonomura, A. Fukuhara, Phys. Rev. Lett. 62, 2969 (1989).https://doi.org/PRLTAO

  28. 28. H. Lichte, Ultramicroscopy 20, 293 (1986).https://doi.org/ULTRD6

More about the Authors

Akira Tonomura. Advanced Research Laboratory of Hitachi, Ltd, Saitama, Japan.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1990_04.jpeg

Volume 43, Number 4

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.