Electromagnetically Induced Transparency
DOI: 10.1063/1.881806
Electromagnetically induced transparency is a technique for eliminating the effect of a medium on a propagating beam of electromagnetic radiation. EIT may also be used, but under more limited conditions, to eliminate optical self‐focusing and defocusing and to improve the transmission of laser beams through inhomogeneous refracting gases and metal vapors, as figure 1 illustrates. The technique may be used to create large populations of coherently driven uniformly phased atoms, thereby making possible new types of optoelectronic devices.
References
1. K.‐J. Boiler, A. Imamoglu, S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991). https://doi.org/PRLTAO
J. E. Field, K. H. Hahn, S. E. Harris, Phys. Rev. Lett. 67, 3062 (1991).https://doi.org/PRLTAO2. G. Alzetta, A. Gozzini, L. Moi, G. Orriols, Nuovo Cimento B 36, 5 (1976).
3. O. A. Kocharovskaya, Ya. I. Khanin, Sov. Phys. JETP 63, 945 (1986). https://doi.org/SPHJAR
M. B. Gornyi, B. G. Matisov, Yu. V. Rozhdestvenskii, Sov. Phys. JETP 68, 728 (1989).https://doi.org/SPHJAR4. O. A. Kocharovskaya, Ya. I. Khanin, Sov. Phys. JETP Lett. 48, 630 (1988).
S. E. Harris, Phys. Rev. Lett. 62, 1033 (1989). https://doi.org/PRLTAO
M. O. Scully, S.‐Y. Zhu, A. Gavridiles, Phys. Rev. Lett. 62, 2813 (1989). https://doi.org/PRLTAO
A. Imamoglu, S. E. Harris, Opt. Lett. 14, 1344 (1989). https://doi.org/OPLEDP
There is also earlier work:V. G. Arkhipkin, Yu. I. Heller, Phys. Lett. 98A, 12 (1983).
Review articles on lasers without inversion are O. Kocharovskaya, Phys. Rep. 219, 175 (1992); https://doi.org/PRPLCM
P. Mandel, Contemporary Physics 34, 235 (1993);
M. O. Scully, Quantum Opt. 6, 203 (1994).https://doi.org/QUOPET5. For some reviews and papers that discuss coherent population trapping and quantum interference, see the following.P. L. Knight, M. A. Lauder, B. J. Dalton, Phys. Rep. 190, 1 (1990). https://doi.org/PRPLCM
B. D. Agap’ev, M. B. Gornyi, B. G. Matisov, Sov. Phys. Usp. 36, 763 (1993).
E. Arimondo, Progress in Optics, E. Wolf, ed., Elsevier Science, Amsterdam (1996), p. 257.
D. A. Cardimona, M. G. Raymer, C. R. StroudJr, J. Phys. B 15, 55 (1982). https://doi.org/JPAMA4
A. Imamoglu, Phys. Rev. A 40, 2835 (1989).
G. S. Agarwal, Phys. Rev. A 55, 2467 (1997).https://doi.org/PLRAAN6. J. Oreg, F. T. Hioe, J. H. Eberly, Phys. Rev. A 29, 690 (1984). https://doi.org/PLRAAN
U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, K. Bergmann, Chem. Phys. Lett. 149, 463 (1988). https://doi.org/CHPLBC
C. E. Carroll, F. T. Hioe, Phys. Rev. Lett. 68, 3523 (1992).https://doi.org/PRLTAO7. S. E. Harris, Phys. Rev. Lett. 70, 552 (1993). https://doi.org/PRLTAO
G. S. Agarwal, Phys. Rev. Lett. 71, 1351 (1993). https://doi.org/PRLTAO
S. E. Harris, Phys. Rev. Lett. 72, 52 (1994). https://doi.org/PRLTAO
E. Cerboneschi, E. Arimondo, Phys. Rev. A 52, R1823 (1995). https://doi.org/PLRAAN
S. E. Harris, Z.‐F. Luo, Phys. Rev. A 52, R928 (1995). https://doi.org/PLRAAN
J. H. Eberly, A. Rahman, R. Grobe, Phys. Rev. Lett. 76, 3687 (1996). https://doi.org/PRLTAO
G. Vemuri, K. V. Vasavada, Opt. Commun. 129, 379 (1996).https://doi.org/OPCOB88. A. Kasapi, M. Jain, G. Y. Yin, S. E. Harris, Phys. Rev. Lett. 74, 2447 (1995). https://doi.org/PRLTAO
A. Kasapi, G. Y. Yin, M. Jain, S. E. Harris, Phys. Rev. A 53, 4547 (1996). https://doi.org/PLRAAN
S. E. Harris, J. E. Field, A. Kasapi, Phys. Rev. A 46, R29 (1992).https://doi.org/PLRAAN9. R. Grobe, F. T. Hioe, J. H. Eberly, Phys. Rev. Lett. 73, 3183 (1994). https://doi.org/PRLTAO
J. H. Eberly, M. L. Pons, H. R. Haq, Phys. Rev. Lett. 72, 56 (1994). https://doi.org/PRLTAO
J. H. Eberly, Quantum Semiclassical Opt. 7, 373 (1995).10. M. Fleischhauer, A. S. Manka, Phys. Rev. A 54, 794 (1996). https://doi.org/PLRAAN
I. E. Mazets, B. G. Matisov, Quantum Semiclassical Opt. 8, 909 (1996).11. M. Jain, A. J. Merriam, A. Kasapi, G. Y. Yin, S. E. Harris, Phys. Rev. Lett. 75, 4385 (1995). https://doi.org/PRLTAO
R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, M. H. Dunn, Phys. Rev. Lett. 74, 670 (1995).12. G. G. Padmabandu, G. R. Welch, I. N. Shubin, E. S. Fry, D. E. Nikonov, M. D. Lukin, M. O. Scully, Phys. Rev. Lett. 76, 2053 (1996).
13. S. E. Harris, J. E. Field, A. Imamoglu, Phys. Rev. Lett. 64, 1107 (1990). https://doi.org/PRLTAO
M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, S. E. Harris, Phys. Rev. Lett. 77, 4326 (1996). https://doi.org/PRLTAO
A related earlier work is S. P. Tewari, G. S. Agarwal, Phys. Rev. Lett. 56, 1811 (1986).https://doi.org/PRLTAO14. K. Hakuta, L. Marmet, B. P. Stoicheff, Phys. Rev. Lett. 66, 596 (1991).https://doi.org/PRLTAO
15. J. Donoghue, M. Cronin‐Golomb, J. S. Kane, P. R. Hemmer, Opt. Lett. 16, 1313 (1991). https://doi.org/OPLEDP
P. R. Hemmer, D. P. Katz, J. Donoghue, M. Cronin‐Golomb, M. S. Shahriar, P. Kumar, Opt. Lett. 20, 982 (1995). https://doi.org/OPLEDP
H. Schmidt, A. Imamoglu, Opt. Lett. 21, 1936 (1996).https://doi.org/OPLEDP16. M. O. Scully, M. Fleischhauer, Phys. Rev. Lett. 69, 1360 (1992). https://doi.org/PRLTAO
M. O. Scully, Phys. Rev. Lett. 67, 1855 (1991). https://doi.org/PRLTAO
A. S. Zibrov, M. D. Lukin, L. Hollberg, D. E. Nikonov, M. O. Scully, H. G. Robinson, V. L. Velichansky, Phys. Rev. Lett. 76, 3935 (1996).https://doi.org/PRLTAO17. M. Xiao, Y.‐Q. Li, S.‐Z. Jin, J. Gea‐Banacloche, Phys. Rev. Lett. 74, 666 (1995). https://doi.org/PRLTAO
J. Gea‐Banacloche, Y.‐Q. Li, S.‐Z. Jin, M. Xiao, Phys. Rev. A 51, 576 (1995). https://doi.org/PLRAAN
A. Kasapi, Phys. Rev. Lett. 77, 1035 (1996).https://doi.org/PRLTAO18. S. E. Harris, Phys. Rev. Lett. 77, 5357 (1996). https://doi.org/PRLTAO
S. J. vanEnk, J. Zhang, P. Lambropoulos, Phys. Rev. A 50, 2777 (1994). https://doi.org/PLRAAN
S. E. Harris, A. V. Sokolov, Phys. Rev. A(1997), to be published.
More about the Authors
Stephen E. Harris. Stanford University, Stanford, California.