Discover
/
Article

Development of quantum electrodynamics

SEP 01, 1966
For a consistent formulation of quantum electrodynamics a theory must be found that treats time and space on an equal footing. The author describes his efforts and successes in this direction.
Sin‐itiro Tomonaga

IN 1932, when I started my research career as an assistant to Nishina, Dirac published a paper in the Proceedings of the Royal Society, London. In this paper, he discussed the formulation of relativistic quantum mechanics, especially that of electrons interacting with the electromagnetic field. At that time a comprehensive theory of this interaction had been formally completed by Heisenberg and Pauli, but Dirac was not satisfied with this theory and tried to construct a new theory from a different point of view. Heisenberg and Pauli regarded the (electromagnetic) field itself as a dynamical system amenable to the Hamiltonian treatment; its interaction with particles could be described by an interaction energy, so that the usual method of Hamiltonian quantum mechanics could be applied. On the other hand, Dirac thought that the field and the particles should play essentially different roles. That is to say, according to him, “the role of the field is to provide a means for making observations of a system of particles” and therefore “we cannot suppose the field to be a dynamical system on the same footing as the particles and thus be something to be observed in the same way as the particles.”

This article is only available in PDF format

References

  1. 1. P. A. M. Dirac, Proc. Roy. Soc. 136, 453 (1932).

  2. 2. W. Heisenberg, W. Pauli, Z. Physik. 56, 1 (1929).https://doi.org/ZEPYAA

  3. 3. L. Rosenfeld, Z. Physik. 76, 729 (1932).https://doi.org/ZEPYAA

  4. 4. P. A. M. Dirac, V. Fock, B. Podolsky, Phys. USSR. 2, 468 (1932).

  5. 5. F. Bloch, Phys. Z. USSR. 5, 301 (1943).

  6. 6. H. Yukawa, Kagaku 12, 249 (1943).

  7. 7. P. A. M. Dirac, Phys. Z. USSR. 3, 64 (1933).

  8. 8. S. Tomonaga, Progr. Theor. Phys. 1, 27 (1946); https://doi.org/PTPKAV
    Z. Koha, S. Tati, S. Tomonaga, Progr. Theor. Phys. 2, 101, 198 (1947); https://doi.org/PTPKAV
    S. Kanesawa, S. Tomonaga, Progr. Theor. Phys. 3, 1, 101 (1948).https://doi.org/PTPKAV

  9. 9. V. F. Weisskopf, Phys. Rev. 56, 72 (1939).https://doi.org/PHRVAO

  10. 10. W. Braunbek, E. Weinman, Z. Phys. 110, 369 (1938).https://doi.org/ZEPYAA

  11. 11. W. Pauli, M. Fierz, Nuovo Cimento 15, 267 (1938).https://doi.org/NUCIAD

  12. 12. S. M. Dancoff, Phys. Rev. 55, 959 (1939).https://doi.org/PHRVAO

  13. 13. F. Bloch, A. Nordsieck, Phys. Rev. 52, 54 (1937).https://doi.org/PHRVAO

  14. 14. W. Heisenberg, Z. Phys. 113, 61 (1939).https://doi.org/ZEPYAA

  15. 15. V. F. Weisskopf, Kgl. Danske Vid. Sels. 14, No. 6 (1936).

  16. 16. S. Sakata, Progr. Theor. Phys. 1, 143 (1946).https://doi.org/PTPKAV

  17. 17. A. Pais, Phys. Rev. 73, 173 (1946).https://doi.org/PHRVAO

  18. 18. D. Ito, Z. Koba, S. Tomonaga, Progr. Theor. Phys. 3, 276 (1948); https://doi.org/PTPKAV
    Z. Koba, G. Takeda, Progr. Theor. Phys. 3, 407 (1948).https://doi.org/PTPKAV

  19. 19. Z. Koba, S. Tomonaga, Progr. Theor. Phys. 3, 290 (1948); https://doi.org/PTPKAV
    S. Tati, S. Tomonaga, Progr. Theor. Phys. 3, 391 (1948).https://doi.org/PTPKAV

  20. 20. H. W. Lewis, Phys. Rev. 73, 173 (1948); https://doi.org/PHRVAO
    S. T. Epstein, Phys. Rev. 73, 179 (1948).https://doi.org/PHRVAO

  21. 21. J. Schwinger, Phys. Rev. 73, 416 (1948); https://doi.org/PHRVAO
    J. Schwinger, 74, 1439 (1948); https://doi.org/PHRVAO , Phys. Rev.
    J. Schwinger, 75, 651 (1949); https://doi.org/PHRVAO , Phys. Rev.
    J. Schwinger, 76, 790 (1949).https://doi.org/PHRVAO , Phys. Rev.

  22. 22. W. E. Lamb, R. C. Retherford, Phys. Rev. 72, 241 (1947).https://doi.org/PHRVAO

  23. 23. H. A. Bethe, Phys. Rev. 72, 339 (1947).https://doi.org/PHRVAO

  24. 24. N. Kroll, W. E. Lamb, Phys. Rev. 75, 388 (1949); https://doi.org/PHRVAO
    J. B. French, V. F. Weisskopf, Phys. Rev. 75, 1241 (1949).https://doi.org/PHRVAO

  25. 25. H. Fukuda, Y. Miyamoto, S. Tomonaga, Progr. Theor. Phys. 4, 47, 121 (1949).https://doi.org/PTPKAV

  26. 26. R. Feynman, Phys. Rev. 74, 1430 (1948); https://doi.org/PHRVAO
    R. Feynman, 76, 769 (1949).https://doi.org/PHRVAO , Phys. Rev.

  27. 27. F. Dyson, Phys. Rev. 75, 486 (1949); https://doi.org/PHRVAO
    1736 (1949).

More about the Authors

Sin‐itiro Tomonaga. Institute for Optical Research, Tokyo University of Education.

In These Collections
Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1966_09.jpeg

Volume 19, Number 9

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.