Discover
/
Article

Defects in liquid crystals

MAY 01, 1982
Appearing under the polarizing microscope as ellipses, parabolas, hyperbolas, lines and points, colorful structural singularities are understood through topological and geometrical arguments.
William F. Brinkman
Patricia E. Cladis

The most striking feature of liquid crystals is the wide variety of visual patterns they display. These patterns, such as those shown in figure 1 and on the cover, are due almost entirely to the defect structure that occurs in the long‐range molecular order of the liquid. Indeed, historically, the underlying structure of the liquid‐crystal phases known as nematic and smectic‐A was discovered from a study of stable defects that characterize these phases. Such defects are easily visible in the optical microscope. By examining the thin and thick thread‐like structures observed in nematic liquid crystals, Otto Lehman and Georges Friedel deduced that this phase involves long‐range orientational ordering of the long axis of the rod‐like molecules. (The direction of this orientational ordering is what we now denote by the unit vector , called the director.)

This article is only available in PDF format

References

  1. 1. O. Lehman, Flüssige Kristalle, Engelmann, Leipzig (1904).

  2. 2. G. Friedel, Ann. Phys. (Paris) 18, 273 (1922).

  3. 3. For a detailed discussion see P. G. de Gennes, The Physics of Liquid Crystals, Oxford U.P., Oxford (1974).

  4. 4. M. Kleman, Points, Lignes, Parois, Edition de Physique, Paris (1977).

  5. 5. P. E. Cladis, M. Kleman, J. Phys. (Paris) 33, 591 (1972);
    R. B. Meyer, Phil. Mag. 27, 405 (1973).

  6. 6. G. Toulouse, M. Kleman, J. Phys. Lett. (Paris) 37, L‐149 (1976).

  7. 7. G. E. Volovik, V. P. Mineyev, Zh. Eksp. Teor. Fiz. Pis’ma Red. 24, 605 (1976)
    [G. E. Volovik, V. P. Mineyev, JETP Lett. 24, 561 (1976)].

  8. 8. W. Helfrich, J. Phys. (Paris) 39, 1199 (1978).

  9. 9. S. Meiboom, J. P. Sethna, P. W. Anderson, W. F. Brinkman, Phys. Rev. Lett. 46, 1216 (1981).https://doi.org/PRLTAO

  10. 10. F. C. Frank, Dis. Faraday Soc. 29, 1 (1959).

  11. 11. Y. Bouligand, P. E. Cladis, L. Liebert, L. Strzelecki, Mol. Cryst. Liq. Cryst. 25, 233 (1974).

  12. 12. P. E. Cladis, M. Kleman, P. Pieranski, CRAS (Paris) B273, 275 (1971).

  13. 13. C. Williams, P. Pieranski, P. E. Cladis, Phys. Rev. Lett. 29, 90 (1972).https://doi.org/PRLTAO

  14. 14. J. M. Kosterlitz, D. J. Thouless, J. Phys. C 6, 1181 (1973).

  15. 15. N. D. Mermin, Rev. Mod. Phys. 51, 591 (1979);
    V. P. Mineyev in Physics Reviews, Vol. 2,
    I. M. Khalatnikov, ed., Soviet Science Reviews (1981). Page 173.

  16. 16. J. P. Sethna, M. Kleman (preprint, submitted to Phys. Rev. Lett.)
    This preprint helped us clarify the differences between topological and geometrical considerations. See also, Y. Bouligand, J. Phys. (Paris) 33, 525 (1972).

  17. 17. P. E. Cladis, Phil. Mag. 29, 641 (1974).

  18. 18. S. T. Lagerwall, R. B. Meyer, B. Stebler, Ann. Phys. 3, 249 (1978).

  19. 19. G. Toulouse, J. Phys. Lett. (Paris) 38, L‐67 (1977).

  20. 20. F. Reinitzer, Monatsch. Chem. 9, 421 (1888).

  21. 21. S. Meiboom, M. Sammon, Phys. Rev. Lett. 44, 882 (1980); https://doi.org/PRLTAO
    D. L. Johnson, J. H. Flack, P. P. Crooker, Phys. Rev. Lett. 45, 641 (1980); https://doi.org/PRLTAO
    M. Marcus, J. Phys. (Paris) 42, 61 (1981);
    A. Saupe, Mol. Cryst. Liq. Cryst. 7, 59 (1969).

  22. 22. H. Hornreich, S. Shtrikmann, J. Phys. (Paris) 41, 335 (1980).

  23. 23. See, for example, P. L. Finn, P. E. Cladis, Mol. Cryst. Liq. Cryst. Lett. 72, 107 (1981);
    P. L. Finn, P. E. Cladis, Mol. Cryst. Liq. Cryst. 84, 159 (1982).

  24. 24. S. A. Brazovskii and S. G. Dmitriev, Zn. Eksp. Teor. Fiz. 69, 979 (1975)
    [S. A. Brazovskii and S. G. Dmitriev, Sov. Phys. JETP 42, 497 (1976)].

More about the authors

William F. Brinkman, Bell Laboratories.

Patricia E. Cladis, Bell Lab's chemical physics research laboratory.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1982_05.jpeg

Volume 35, Number 5

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.