Discover
/
Article

Critical Currents and Magnet Applications of High‐Tc Superconductors

JUN 01, 1991
What has become of the great expectations of 1987? Achieving critical currents high enough for practical magnet applications is no easy matter with materials as complex as the high‐temperature superconducting compounds. But prospects are now very bright.
David Larbalestier

The discovery of a 92 K superconductor in early 1987 by M. K. Wu, Paul Chu and their coworkers at the Universities of Alabama and Houston produced widespread euphoria. Newspapers and magazines of every conceivable political and social persuasion speculated on the applications of superconductivity. Some even foretold a new age; after the stone, bronze, iron, steel and semiconductor ages would come the superconductor age. Most of the applications envisaged for this new age depended on the generation of strong magnetic fields, frequently in large volumes. Thus the vanishing of resistance in the superconducting state was the key property for these applications, and it is this ability to carry very large current densities without ohmic loss that forms the essential thread of this article.

This article is only available in PDF format

References

  1. 1. G. Deutscher, K. A. Muller, Phys. Rev. Lett. 59, 1745 (1988).https://doi.org/PRLTAO

  2. 2. K. Sandhage, C. N. Riley, W. L. Carter, J. Metals 43, 21 (1991).

  3. 3. D. Dimos, J. Mannhart, P. Chaudhari, Phys. Rev. B 41, 4038 (1990).https://doi.org/PRBMDO

  4. 4. M. Tinkham, Introduction to Superconductivity, R. E. Krieger, Malabar, FL (1980).

  5. 5. Y. Gao, K. L. Merkle, G. Bai, H. L. M. Chang, D. J. Lam, Physica C 174, 1 (1991).https://doi.org/PHYCE6

  6. 6. S. E. Babcock, D. C. Larbalestier, Appl. Phys. Lett. 55, 393 (1989).https://doi.org/APPLAB

  7. 7. D. C. Larbalestier, S. E. Babcock, X. Y. Cai, L. Cooley, M. Daeumling, D. P. Hampshire, J. McKinnell, J. M. Seuntjens, Progr. in High Temp. Superconductivity 18, 128 (1989).

  8. 8. D. Lathrop, S. Russek, B. Moeckly, D. Chamberlain, L. Pesenson, R. Buhrman, D. Shin, J. Silcox, IEEE Trans. Mag. 27, 3203 (1991).https://doi.org/IEMGAQ

  9. 9. L. N. Bulaevskii, J. Clem, L. I. Glazman, A. P. Malozemoff, submitted to Phys. Rev. (1991).

  10. 10. S. E. Babcock, X. Y. Cai, D. L. Kaiser, D. C. Larbalestier, Nature 347, 167 (1990).https://doi.org/NATUAS

  11. 11. Y. Gao, G. Bai, D. J. Lam, K. L. Merkle, Physica C 173, 487 (1991).https://doi.org/PHYCE6

  12. 12. S. Jin, Mater. Sci. & Eng. B 7, 243 (1991).

  13. 13. K. Heine, N. Tenbrink, M. Thbner, Appl. Phys. Lett. 55, 2441 (1989).https://doi.org/APPLAB

  14. 14. H. Küpfer, I. Apfelstadt, R. Flükiger, C. Keller, R. Meier‐Hirmer, B. Runtsch, A. Turowski, U. Weich, T. Wolf, Cryogenics 28, 650 (1988).https://doi.org/CRYOAX

  15. 15. A. M. Campbell, J. E. Evetts, Adv. Phys. 21, 199 (1972).https://doi.org/ADPHAH

  16. 16. M. A. Tinkham, IEEE Trans. Magn. 27, 828 (1991).https://doi.org/IEMGAQ

  17. 17. A. M. Campbell, IEEE Trans. Magn. 27, 1660 (1991).https://doi.org/IEMGAQ

  18. 18. H. Brandt, Int. J. Mod. Phys. B, 5, 751 (1991).

  19. 19. M. Murakami, T. Oyama, H. Fujimoto, S. Gotoh, K. Yamaguchi, Y. Shiohara, N. Koshizuaka, S. Tanaka, IEEE Trans. Magn. 27, 1479 (1991).

  20. 20. S. J. Dale, S. M. Wolf, T. R. Schneider, “Energy Applications of High Temperature Superconductivity,” Electric Power Research Institute Report No. ER‐6682 (1991).

  21. 21. K. Sato, T. Hikata, H. Mukai, M. Ueyama, N. Shibuta, T. Kato, T. Masuda, M. Nagata, K. Iwata, T. Mitsui, IEEE Trans. Magn. 27, 1231 (1991).https://doi.org/IEMGAQ

More about the Authors

David Larbalestier. University of Wisconsin, Madison.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1991_06.jpeg

Volume 44, Number 6

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.