Discover
/
Article

Cosmic Strings: Topological Fossils of the Hot Big Bang

MAR 01, 1989
Some grand unified theories require that stringy exotic matter from the very early universe persist to the present, with astrophysically observable consequences.
William H. Press
David N. Spergel

Was the physics of the early universe like the physics of a rotating bucket of superfluid helium? Condensed matter physicists know that phase transitions can form exotic topological objects, such as quantized vortices in superfluid helium or vortex lines of magnetic field in superconductors. In recent years cosmologists have been exploring whether analogous phenomena occurred in the early universe. Cosmic strings, remnants of an ultrahightemperature phase transition at 1029K, may have seeded galaxy formation and could have given rise to other effects observable in the universe today.

This article is only available in PDF format

References

  1. 1. G. F. Mazenko, W. G. Unruh, R. M. Wald, Phys. Rev. D 31, 273 (1985).https://doi.org/PRVDAQ

  2. 2. R. H. Brandenberger, Inflationary Universe Models and Cosmic Strings, World Scientific, Singapore, to be published.

  3. 3. R. Gregory, Phys. Lett. B 206, 199 (1988). https://doi.org/PYLBAJ
    K. Maeda, N. Turok, Phys. Lett. B 202, 376 (1988).https://doi.org/PYLBAJ

  4. 4. N. Turok, T. W. B. Kibble, Phys. Lett. B 116, 141 (1982).https://doi.org/PYLBAJ

  5. 5. T. Vachaspati, D. Garfinkle, Phys. Rev. D 36, 2229 (1987).https://doi.org/PRVDAQ

  6. 6. C. Thompson, Phys. Rev. D 37, 283 (1988).https://doi.org/PRVDAQ

  7. 7. R. J. Scherrer, W. H. Press, Phys. Rev. D 39, 371 (1989).https://doi.org/PRVDAQ

  8. 8. T. W. B. Kibble, J. Phys. A: Gen. Phys. 9, 1387 (1986).
    R. J. Scherrer, J. A. Frieman, Phys. Rev. D 33, 3356 (1986).https://doi.org/PRVDAQ

  9. 9. R. A. Matzner, Computers in Physics, September‐October 1988, p. 51.

  10. 10. K. J. M. Moriarty, E. Myers, C. Rebbi, in Cosmic Strings: The Current Status, F. Accetta, L. Krauss, eds., World Scientific, Singapore (1989), in press.

  11. 11. A. Albrecht, N. Turok, Phys. Rev. Lett. 54, 1868 (1985).https://doi.org/PRLTAO

  12. 12. D. Bennett, F. Bouchet, Phys. Rev. Lett. 60, 257 (1988).https://doi.org/PRLTAO

  13. 13. G. R. Blumenthal, S. M. Faber, J. R. Primack, M. J. Rees, Nature 311, 517 (1984). https://doi.org/NATUAS
    S. D. M. White, C. S. Frenk, M. Davis, G. Efstathiou, Astrophys. J. 313, 505 (1987).https://doi.org/ASJOAB

  14. 14. S. Lilly, Astrophys. J. 333, 161 (1988).https://doi.org/ASJOAB

  15. 15. See A. Vilenkin, Phys. Rep. 121, 263 (1985), for a review.https://doi.org/PRPLCM

  16. 16. R. J. Scherrer, A. L. Melott, E. Bertschinger, Phys. Rev. Lett. 62, 379 (1989).https://doi.org/PRLTAO

  17. 17. R. Brandenberger, N. Kaiser, D. N. Schramm, N. Turok, Phys. Rev. Lett. 59, 2371 (1987). https://doi.org/PRLTAO
    E. Bertschinger, P. N. Watts, Astrophys. J. 316, 489 (1988).https://doi.org/ASJOAB

  18. 18. N. Turok, Phys. Rev. Lett. 55, 1801 (1985).https://doi.org/PRLTAO

  19. 19. A. L. Melott, R. J. Scherrer, Nature 328, 691 (1987). https://doi.org/NATUAS
    E. P. S. Shellard, R. H. Brandenberger, Phys. Rev. D 38, 3610 (1988).https://doi.org/PRVDAQ

  20. 20. A. Vilenkin, Phys. Rev. D 23, 852 (1981). https://doi.org/PRVDAQ
    W. A. Hiscock, Phys. Rev. D 31, 3288 (1985).https://doi.org/PRVDAQ

  21. 21. J. R. GottIII, Astrophys. J. 288, 422 (1985).https://doi.org/ASJOAB

  22. 22. L. L. Cowie, E. M. Hu, Astrophys. J. 318, L33 (1987).https://doi.org/ASJOAB

  23. 23. N. Kaiser, A. Stebbins, Nature 310, 391 (1984).https://doi.org/NATUAS

  24. 24. F. R. Bouchet, D. Bennett, A. J. Stebbins, Nature 335, 410 (1988).https://doi.org/NATUAS

  25. 25. C. J. Hogan, M. J. Rees, Nature 311, 109 (1984).https://doi.org/NATUAS

  26. 26. L. A. Rawley, J. H. Taylor, M. M. Davis, D. W. Allan, Science 238, 761 (1987).https://doi.org/SCIEAS

  27. 27. E. Witten, Nucl. Phys. B 249, 557 (1985).https://doi.org/NUPBBO

  28. 28. J. P. Ostriker, C. Thompson, E. Witten, Phys. Lett. B 180, 231 (1986).https://doi.org/PYLBAJ

  29. 29. D. N. Spergel, W. H. Press, R. H. Scherrer, Phys. Rev. D 39, 379 (1989).https://doi.org/PRVDAQ

  30. 30. E. M. Chudnofsky, G. B. Field, D. N. Spergel, A. Vilenkin, Phys. Rev. D 34, 944 (1986).https://doi.org/PRVDAQ

More about the authors

William H. Press, Harvard University, Cambridge, Massachusetts.

David N. Spergel, Princeton University, Princeton, New Jersey.

Related content
/
Article
The ability to communicate a key message clearly and concisely to a nonspecialized audience is a critical skill to develop at all educational levels.
/
Article
With strong magnetic fields and intense lasers or pulsed electric currents, physicists can reconstruct the conditions inside astrophysical objects and create nuclear-fusion reactors.
/
Article
A crude device for quantification shows how diverse aspects of distantly related organisms reflect the interplay of the same underlying physical factors.
/
Article
Events held around the world have recognized the past, present, and future of quantum science and technology.
This Content Appeared In
pt-cover_1989_03.jpeg

Volume 42, Number 3

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.