Discover
/
Article

Cosmic Strings: Topological Fossils of the Hot Big Bang

MAR 01, 1989
Some grand unified theories require that stringy exotic matter from the very early universe persist to the present, with astrophysically observable consequences.
William H. Press
David N. Spergel

Was the physics of the early universe like the physics of a rotating bucket of superfluid helium? Condensed matter physicists know that phase transitions can form exotic topological objects, such as quantized vortices in superfluid helium or vortex lines of magnetic field in superconductors. In recent years cosmologists have been exploring whether analogous phenomena occurred in the early universe. Cosmic strings, remnants of an ultrahightemperature phase transition at 1029K, may have seeded galaxy formation and could have given rise to other effects observable in the universe today.

This article is only available in PDF format

References

  1. 1. G. F. Mazenko, W. G. Unruh, R. M. Wald, Phys. Rev. D 31, 273 (1985).https://doi.org/PRVDAQ

  2. 2. R. H. Brandenberger, Inflationary Universe Models and Cosmic Strings, World Scientific, Singapore, to be published.

  3. 3. R. Gregory, Phys. Lett. B 206, 199 (1988). https://doi.org/PYLBAJ
    K. Maeda, N. Turok, Phys. Lett. B 202, 376 (1988).https://doi.org/PYLBAJ

  4. 4. N. Turok, T. W. B. Kibble, Phys. Lett. B 116, 141 (1982).https://doi.org/PYLBAJ

  5. 5. T. Vachaspati, D. Garfinkle, Phys. Rev. D 36, 2229 (1987).https://doi.org/PRVDAQ

  6. 6. C. Thompson, Phys. Rev. D 37, 283 (1988).https://doi.org/PRVDAQ

  7. 7. R. J. Scherrer, W. H. Press, Phys. Rev. D 39, 371 (1989).https://doi.org/PRVDAQ

  8. 8. T. W. B. Kibble, J. Phys. A: Gen. Phys. 9, 1387 (1986).
    R. J. Scherrer, J. A. Frieman, Phys. Rev. D 33, 3356 (1986).https://doi.org/PRVDAQ

  9. 9. R. A. Matzner, Computers in Physics, September‐October 1988, p. 51.

  10. 10. K. J. M. Moriarty, E. Myers, C. Rebbi, in Cosmic Strings: The Current Status, F. Accetta, L. Krauss, eds., World Scientific, Singapore (1989), in press.

  11. 11. A. Albrecht, N. Turok, Phys. Rev. Lett. 54, 1868 (1985).https://doi.org/PRLTAO

  12. 12. D. Bennett, F. Bouchet, Phys. Rev. Lett. 60, 257 (1988).https://doi.org/PRLTAO

  13. 13. G. R. Blumenthal, S. M. Faber, J. R. Primack, M. J. Rees, Nature 311, 517 (1984). https://doi.org/NATUAS
    S. D. M. White, C. S. Frenk, M. Davis, G. Efstathiou, Astrophys. J. 313, 505 (1987).https://doi.org/ASJOAB

  14. 14. S. Lilly, Astrophys. J. 333, 161 (1988).https://doi.org/ASJOAB

  15. 15. See A. Vilenkin, Phys. Rep. 121, 263 (1985), for a review.https://doi.org/PRPLCM

  16. 16. R. J. Scherrer, A. L. Melott, E. Bertschinger, Phys. Rev. Lett. 62, 379 (1989).https://doi.org/PRLTAO

  17. 17. R. Brandenberger, N. Kaiser, D. N. Schramm, N. Turok, Phys. Rev. Lett. 59, 2371 (1987). https://doi.org/PRLTAO
    E. Bertschinger, P. N. Watts, Astrophys. J. 316, 489 (1988).https://doi.org/ASJOAB

  18. 18. N. Turok, Phys. Rev. Lett. 55, 1801 (1985).https://doi.org/PRLTAO

  19. 19. A. L. Melott, R. J. Scherrer, Nature 328, 691 (1987). https://doi.org/NATUAS
    E. P. S. Shellard, R. H. Brandenberger, Phys. Rev. D 38, 3610 (1988).https://doi.org/PRVDAQ

  20. 20. A. Vilenkin, Phys. Rev. D 23, 852 (1981). https://doi.org/PRVDAQ
    W. A. Hiscock, Phys. Rev. D 31, 3288 (1985).https://doi.org/PRVDAQ

  21. 21. J. R. GottIII, Astrophys. J. 288, 422 (1985).https://doi.org/ASJOAB

  22. 22. L. L. Cowie, E. M. Hu, Astrophys. J. 318, L33 (1987).https://doi.org/ASJOAB

  23. 23. N. Kaiser, A. Stebbins, Nature 310, 391 (1984).https://doi.org/NATUAS

  24. 24. F. R. Bouchet, D. Bennett, A. J. Stebbins, Nature 335, 410 (1988).https://doi.org/NATUAS

  25. 25. C. J. Hogan, M. J. Rees, Nature 311, 109 (1984).https://doi.org/NATUAS

  26. 26. L. A. Rawley, J. H. Taylor, M. M. Davis, D. W. Allan, Science 238, 761 (1987).https://doi.org/SCIEAS

  27. 27. E. Witten, Nucl. Phys. B 249, 557 (1985).https://doi.org/NUPBBO

  28. 28. J. P. Ostriker, C. Thompson, E. Witten, Phys. Lett. B 180, 231 (1986).https://doi.org/PYLBAJ

  29. 29. D. N. Spergel, W. H. Press, R. H. Scherrer, Phys. Rev. D 39, 379 (1989).https://doi.org/PRVDAQ

  30. 30. E. M. Chudnofsky, G. B. Field, D. N. Spergel, A. Vilenkin, Phys. Rev. D 34, 944 (1986).https://doi.org/PRVDAQ

More about the Authors

William H. Press. Harvard University, Cambridge, Massachusetts.

David N. Spergel. Princeton University, Princeton, New Jersey.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1989_03.jpeg

Volume 42, Number 3

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.