Discover
/
Article

Cosmic Rays, Nuclear Gamma Rays and the Origin of the Light Elements

APR 01, 1998
Recent observations of Li, Be and B abundances in halo stars formed in the early Galaxy shed new light on the source of cosmic rays, suggesting acceleration from the ejecta of supernovae.
Reuven Ramaty
Benzion Kozlovsky
Richard Lingenfelter

The origin of cosmic rays has been a major mystery in astrophysics for nearly a century. However, any lingering doubt about whether the bulk of the cosmic rays (those with energies below about 1015eV) are Galactic or extragalactic has been removed in the 1990s in favor of a Galactic origin. The question has been settled by gamma‐ray observations made by the Energetic Gamma Ray Experiment Telescope on the Compton Gamma Ray Observatory. The EGRET observations showed that the cosmic‐ray energy density in a nearby galaxy—the Small Magellanic Cloud—is much lower than that found locally in our own Galaxy and is thus inconsistent with a uniform extragalactic density. This discovery, of course, does not preclude an extragalactic origin for the very highest energy cosmic rays, which are observed above about 1019eV. (See PHYSICS TODAY, January 1998, page 31). The power of about 1041ergs/s required to maintain the cosmic rays throughout the Galaxy is most likely supplied by supernovae (figure 1). With a Galactic supernova rate of roughly three per century, the required energy per supernova is about 1050ergs, which is about 10% of the kinetic energy of the expanding supernova ejecta. Shock acceleration in the supernova blast wave driven by the ejecta could impart such a proportion of the available kinetic energy to cosmic rays.

This article is only available in PDF format

References

  1. 1. S. P. Maran, ed., The Astronomy and Astrophysics Encyclopedia, Van Nostrand, New York (1992);
    see cosmic‐ray reviews by J. P. Wefel, P. Meyer, R. E. Lingenfelter and J. R. Jokipii, supernova reviews by R. A. Fresen, K. Nomoto and S. E. Woosley, and a Wolf‐Rayet review by M. A. Azzopardi.

  2. 2. For the EGRET observations of the Magellanic clouds, see P. Sreekumar et al., Phys. Rev. Lett. 70, 127 (1993).https://doi.org/PRLTAO
    For the EGRET data on Orion, see S. W. Digel, S. D. Hunter, R. Mukherjee, Astrophys. J. 441, 270 (1995).https://doi.org/ASJOAB

  3. 3. For beryllium observations, see P. Molaro, P. Bonifacio, F. Castelli, L. Pasquini, Astron. and Astrophys. 319, 593 (1997).
    For boron observations, see D. K. Duncan et al., Astrophys. J. 488, 338 (1997). https://doi.org/ASJOAB
    For 6Li observations, see L. M. Hobbs, J. A. Thorburn, Astrophys. J. 491, 772 (1997). https://doi.org/ASJOAB
    For the first suggestion that B and Be in the early Galaxy are produced mainly by accelerated C and O, see D. K. Duncan, D. L. Lambert, M. Lemke, Astrophys. J. 401, 584 (1992).https://doi.org/ASJOAB

  4. 4. F. X. Timmes, S. E. Woosley, T. A. Weaver, Astrophys. J. Suppl. 98, 617 (1995).

  5. 5. H. Reeves, Rev. Mod. Phys. 66, 193 (1994).https://doi.org/RMPHAT

  6. 6. S. E. Woosley, T. A. Weaver, Astrophys. J. Suppl. 101, 181 (1995)

  7. 7. R. Ramaty, B. Kozlovsky, R. E. Lingenfelter, H. Reeves, Astrophys. J. 488, 730 (1997).

  8. 8. For the meteorite data, see M. Chaussidon, F. Robert, Nature 374, 337 (1995),
    For the interstellar data, see S. R. Federman, D. L. Lambert, J. A. Cardelli, Y. Sheffer, Nature 381, 764 (1996).https://doi.org/NATUAS

  9. 9. H. Bloemen et al., Astron. and Astrophys. 281, 5 (1994);
    H. Bloemen, Astrophys. J. 475, 251997).

  10. 10. R. Ramaty, B. Kozlovsky, R. E. Lingenfelter, Astrophys. J. 456, 525 (1996). https://doi.org/ASJOAB
    R. Ramaty, Astron. and Astrophys. Suppl. 120, C373 (1996).
    B. Kozlovsky, R. Ramaty, R. E. Lingenfelter, Astrophys. J. 484, 286 (1997).

  11. 11. E. M. G. Parizot, M. Casse, E. Vangioni‐Flam, Astron. And Astrophys. 328, 107 (1997).

  12. 12. B. B. Nath, P. L. Biermann, Month. Not. Roy. Astron. Soc. 270, L33 (1994).
    A. M. Bykov, H. Bloemen, Astron. and Astrophys. 283, 1 (1994).
    H. Bloemen, A. Bykov, in Proc. 4th Compton Symp. part 1, C. D. Dermer, M. S. Strickman, J. D. Kurfess, eds., AIP, New York (1998) p. 249.

  13. 13. M. Casse, R. Lehoucq, E. Vangioni‐Flam, Nature 373, 318 (1995).

  14. 14. M. Maeder, G. Meynet, Astron. and Astrophys. 287, 803 (1994),
    P. Massey, C. C. Lang, K. DeGioia‐Eastwood, C. D. Garmany, Astrophys. J. 438, 188 (1995).

  15. 15. W. R. Webber, Space Set. Rev. 81, 107 (1997).

  16. 16. J.‐P. Meyer, L. O’C. Drury, D. C. Ellison, Astrophys. J. 487, 182 (1997).
    D. C. Ellison, L. O’C. Drury, J.‐P. Meyer, Astrophys. J. 487, 197 (1997).

  17. 17. For coronal and solar energetic particle abundances, see D. V. Reames, Adv. Space Res. 15, no. 7, 41 (1995).
    For the extension of the solar energetic particle model to acceleration in stellar atmospheres, see M. M. Shapiro, in 25th International Cosmic Ray Conf. M. S. Potgieter, B. C. Raubenheimer, D. J. van der Walt, eds., Potchefstroom University for Christian Higher Education, Potchefstroom, South Africa (1997), vol. 4, p. 353.

  18. 18. For a discussion of refractory carbon in SN1987A, see L. B. Lucy, I. J. Danziger, C. Gouiffes, P. Bouchet, in Structure and Dynamics of the Interstellar Medium, G. Tenorio‐Tagle, M. Moles, J. Melnick, eds.. Springer‐Verlag, Berlin (1989), p. 164,
    For a discussion of freshly released grains, see C. J. Cesarsky, J.‐P. Bibnng, in Origin of Cosmic Rays, G. Setti, G. Spada, A. W. Wolfendale, eds., Reidel, Dordrecht, The Netherlands (1981), p. 361,
    For a discussion of strontium and barium in SN1987A, see P. A. Mazzali, L. B. Lucy, andK. Butler, Astron. and Astrophys. 258, 399 (1992).

More about the authors

Reuven Ramaty, NASA's Goddard Space Flight Center, Greenbelt, Maryland.

Benzion Kozlovsky, Tel Aviv University, Israel.

Richard Lingenfelter, University of California, San Diego.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1998_04.jpeg

Volume 51, Number 4

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.