Discover
/
Article

Correlated Electrons in a Million Gauss

JUN 01, 1996
Researchers are planning experiments using million‐gauss magnets to investigate many of the most intriguing phenomena in condensed matter physics.
Greg Boebinger

Because high‐magnetic‐field experiments have proved to be valuable tools for illuminating the physics of phenomena ranging from the quantum Hall effect to high‐temperature superconductivity, magnet laboratories around the world are constantly striving to produce more intense magnetic fields, using both continuous‐ and pulsed‐field magnets. To date, magnetic fields above 100 tesla have been achieved only by self‐destructing (exploding or imploding) magnet technologies. These intense magnetic fields persist for only a few microseconds, and most of the destructive‐magnet technologies also destroy the sample. However, the recent development of structurally stronger composite conductors has made feasible the design of pulsed magnets capable of nondestructively delivering 10‐ms 100‐T (that is, megagauss) pulses. (See the box on page 41). During the past five years, researchers in both Europe and the US have proposed building such magnets, along with experiments to exploit this new experimental regime.

This article is only available in PDF format

References

  1. 1. J. A. A. J. Perenboom, ed., Research in High Magnetic Fields, Elsevier Science, Amsterdam (1995),
    reprinted from Physica B 211 (1995).

  2. 2. E. Manousakis et al. Physical Phenomena at High Magnetic Fields, Addison‐Wesley, Reading, Mass. (1992).
    Z. Fisk et al., Physical Phenomena at High Magnetic Fields II, World Scientific, Singapore (1996).

  3. 3. MRS Bull. 18 (8), (1993).

  4. 4. N. Miura, ed., Frontiers in High Magnetic Fields, Elsevier Science, Amsterdam (1994),
    reprinted from Physica B 201 (1994).

  5. 5. N. W. Ashcroft, N. D. Mermin, Solid State Physics, Holt, Rinehart and Winston, New York (1976).
    C. Kittel, Introduction to Solid State Physics, Wiley and Sons, New York (1986).

  6. 6. P. Coleman, Physics World 8 (12), 29 (1995). https://doi.org/PHWOEW
    P. Anderson, Physics World 8 (12), 37 (1995). https://doi.org/PHWOEW
    P. W. Anderson, Science 256, 1526 (1992).https://doi.org/SCIEAS

  7. 7. D. Shoenberg, Quantum Oscillations in Solids, Cambridge U.P., Cambridge, UK (1984).

  8. 8. N. Harrison et al., Phys. Rev. B 52, 5584 (1995), and references therein.https://doi.org/PRBMDO

  9. 9. J. S. Brooks et al., Phys. Rev. B 53, 14406 (1996).https://doi.org/PRBMDO

  10. 10. T. Chakraborty, P. Pietilainen, The Quantum Hall Effects. Fractional and Integral, Springer‐Verlag, Berlin (1995).
    R. L. Willett, Adv. Phys., to be published.

  11. 11. G. Zwicknagl, Adv. Phys. 41, 203 (1992).https://doi.org/ADPHAH

  12. 12. W. Joss et al., Phys. Rev. Lett. 59, 1609 (1987). https://doi.org/PRLTAO
    E. G. Haanappel, R. Hedderich, W. Joss, S. Askenazy, Z. Fisk, Physica B 177, 181 (1992). https://doi.org/PHYBE3
    N. Harrison, P. Meeson, P.‐A. Probst, M. Springford, J. Phys.: Cond. Matter 5, 7435 (1993),
    and references therein.H. Aoki, S. Uji, A. K. Albessard, Y. Onuki, Phys. Rev. Lett. 71, 2110 (1993).https://doi.org/PRLTAO

  13. 13. G. Aeppli, Z. Fisk, Comments Cond. Matter Phys. 16, 155 (1992).
    G. S. Boebinger, A. Passner, P. C. Canfield, Z. Fisk, Physica B 211, 227 (1995).https://doi.org/PHYBE3

  14. 14. D. M. Ginsberg, ed., Properties of High Temperature Superconductors III. World Scientific, Singapore (1991).
    D. M. Ginsberg, ed., Properties of High Temperature Superconductors TV, World Scientific, Singapore (1994).

  15. 15. A. P. Mackenzie et al., Phys. Rev. Lett. 71, 1238 (1993). https://doi.org/PRLTAO
    M. S. Osofsky et al., Phys. Rev. Lett. 71, 2315 (1993). https://doi.org/PRLTAO
    Y. Ando, G. S. Boebinger, A. Passner, T. Kimura, K. Kishio, Phys. Rev. Lett. 75, 4662 (1995).https://doi.org/PRLTAO

  16. 16. R. Corcoran et al., Physica B 206‐207, 534 (1995),
    and references therein.C. M. Fowler et al., Phys. Rev. Lett. 68, 534 (1992).

  17. 17. Z. Tesanovic, M. Rasolt, L. Xing, Phys. Rev. Lett. 63, 2424 (1993). https://doi.org/PRLTAO
    M. Rasolt, Z. Tesanovic, Rev. Mod. Phys. 64, 709 (1992). https://doi.org/RMPHAT
    A. G. Lebed, JETP Lett. 44, 114 (1986). https://doi.org/JTPLA2
    N. Dupuis, G. Montambaux, C. A. R. Sa deMelo, Phys. Rev. Lett. 70, 2613 (1993).https://doi.org/PRLTAO

  18. 18. J. Bevk, Ann. Rev. Mater. Sci. 13, 319 (1983).https://doi.org/ARMSCX

More about the Authors

Greg Boebinger. Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1996_06.jpeg

Volume 49, Number 6

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.