Discover
/
Article

Continental drift

APR 01, 1969
Thermal convection within the earth’s crystalline mantle provides a mechanism for large‐scale surface displacements. Oceanic ridges occur where the flow of convection cells comes up to the surface; trenches occur where it descends again.
Donald L. Turcotte
E. Ronald Oxburgh

TODAY MOST EARTH SCIENTISTS accept continental drift as a geological fact. Relative movements between continents on a time scale of 108 years are necessary to explain many geological observations. The remarkable similarity in shape between the west coast of Africa and the east coast of South America has been recognized for nearly as long as accurate maps of the Atlantic have been available; many have assumed that these continents once were connected. It is also accepted that the continents float on the mantle much like blocks of wood on water.

This article is only available in PDF format

References

  1. 1. E. Bullard, J. E. Everett, A. G. Smith, Phil. Trans. Roy. Soc. A258, 41 (1965); https://doi.org/PTRMAD
    R. Dearnley, Phys. Chem. Earth 7, 1 (1966);
    P. M. Hurley, Sci. Am. 53, April 1968; https://doi.org/SCAMAC
    G. O. Allard, V. J. Hurst, Science 163, 528 (1969).https://doi.org/SCIEAS

  2. 2. A. Wegener, The Origin of the Continents and Oceans, 3rd ed., E. P. Dutton, New York (1924).

  3. 3. A. L. du Toit, Our Wandering Continents, Hafner, New York (1937).

  4. 4. H. Jeffreys, The Earth, 4th ed., Cambridge (1962).

  5. 5. Elie de Beaumont, Annales des Sciences Naturelles, 18 and 19 (1829–30).

  6. 6. T. Nagata, Rock Magnetism, Maruzen, Tokyo (1953);
    S. K. Runcorn, Proc. Geol. Ass. Can. 8, 77 (1956);
    S. K. Runcorn, Phil. Trans. Roy. Soc. A258, 1 (1965); https://doi.org/PTRMAD
    E. Irving, Paleomagnetism, John Wiley, New York (1964);
    P. M. S. Blackett, Lectures on Rock Magnetism, Weizmann, Jerusalem (1956).

  7. 7. A. Holmes, Principles of Physical Geology, 2nd ed., Nelson, London (1965), p. 35.

  8. 8. S. W. Carey, Continental Drift, a Symposium, University of Tasmania, Hobart (1958), pp. 177–355.

  9. 9. G. J. F. MacDonald, Rev. Geophys. 1, 578 (1963).https://doi.org/RVGPA3

  10. 10. L. Egyed, Nature 178, 534 (1956); https://doi.org/NATUAS
    L. Egyed, Geofis. Pura Appl. 45, 115 (1960); https://doi.org/GFPAA8
    R. H. Dicke, Science 138, 653 (1962); https://doi.org/SCIEAS
    P. Jordan, Rev. Mod. Phys. 34, 596 (1962).https://doi.org/RMPHAT

  11. 11. P. A. M. Dirac, Proc. Roy. Soc. A165, 199 (1938).

  12. 12. F. Birch, Phys. Earth Planet. Interiors 1, 141 (1968).

  13. 13. A. Cox, R. R. Doell, Nature 189, 45 (1961); https://doi.org/NATUAS
    M. A. Ward, Geophys. J. 8, 217 (1963); https://doi.org/GJOUDQ
    S. J. Van Audel, J. Hospers, Tectonophys. 5, 273 (1968).https://doi.org/TCTOAM

  14. 14. N. A. Haskell, Physics 6, 265 (1935);
    N. A. Haskell, 7, 56 (1936);
    N. A. Haskell, Am. J. Sci. 33, 22 (1937); https://doi.org/AJSCAP
    M. D. Crittenden, Geophys. J. R. Astro. Soc. 14, 261 (1967).

  15. 15. M. D. Crittenden, J. Geophys. Res. 68, 5517 (1963).https://doi.org/JGREA2

  16. 16. T. S. Ke, Phys. Rev. 71, 533 (1947); https://doi.org/PHRVAO
    C. Herring, J. Appl. Phys. 21, 437 (1950).https://doi.org/JAPIAU

  17. 17. R. B. Gordon, J. Geophys. Res. 70, 2413 (1965).https://doi.org/JGREA2

  18. 18. G. J. F. MacDonald, Phil. Trans. Roy. Soc. A258, 215 (1965).https://doi.org/PTRMAD

  19. 19. W. H. K. Lee, S. Uyeda, Review of Heat Flow Data, in Terrestrial Heat Flow, pp. 87–190, American Geophysical Union, Washington, (1965).

  20. 20. Lord Rayleigh, Phil. Mag. 32, 529 (1916); https://doi.org/PHMAA4
    P. H. Roberts, J. Fluid Mech. 30, 33 (1967).https://doi.org/JFLSA7

  21. 21. K. Chandra, Proc. Roy. Soc. A164, 231 (1938);
    E. F. C. Somerscales, D. Dropkin, Int. J. Heat Mass Transfer 9, 1189 (1966).https://doi.org/IJHMAK

  22. 22. A. Holmes, Trans. Geol. Soc. Glasgow 18, 559 (1931).

  23. 23. C. L. Pekeris, Monthly Notices Roy. Astron. Soc. Geophys. Suppl. 3, 340 (1935);
    L. Knopoff, Rev. Geophys. 2, 89 (1964); https://doi.org/RVGPA3
    D. C. Tozer, Phil. Trans. Roy. Soc. A258, 252 (1965).https://doi.org/PTRMAD

  24. 24. R. W. Girdler, Phil. Trans. Roy. Soc. A258, 123 (1965).https://doi.org/PTRMAD

  25. 25. H. H. Hess, Mid‐Oceanic Ridges and Tectonics of the Sea Floor, in Submarine Geology and Geophysics, Colston Papers, vol. 17, pp. 317–334, Butterworths, London (1965).

  26. 26. F. J. Vine, D. H. Matthews, Nature 199, 947 (1963).https://doi.org/NATUAS

  27. 27. R. G. Mason, Geophys. J. 1, 320 (1958).https://doi.org/GJOUDQ

  28. 28. A. Cox, R. R. Doell, G. B. Dalrymple, Science 144, 1537 (1964).https://doi.org/SCIEAS

  29. 29. F. J. Vince, Science 154, 1405 (1966); https://doi.org/SCIEAS
    W. C. Pitman, J. R. Heirtzler, Science 154, 1164 (1966); https://doi.org/SCIEAS
    J. D. Phillips, Science 157, 920 (1967); https://doi.org/SCIEAS
    W. C. Pitman, E. M. Herron, J. R. Heirtzler, J. Geophys. Res. 73, 2069 (1968); https://doi.org/JGREA2
    G. O. Dickson, W. C. Pitman, J. R. Heirtzler, J. Geophys. Res. 73, 2087 (1968); https://doi.org/JGREA2
    X. LePichon, J. R. Heirtzler, G. O. Dickson, E. M. Herron, W. C. Pitman, J. Geophys. Res. 73, 2119 (1968).https://doi.org/JGREA2

  30. 30. C. R. Allen, Phil. Trans. Roy. Soc. A258, 82 (1965).https://doi.org/PTRMAD

  31. 31. B. L. Isacks, L. R. Sykes, J. Oliver, Trans. Amer. Geophys. Un. 48, 219 (1967).

  32. 32. J. Oliver, B. L. Isacks, J. Geophys. Res. 72, 4259 (1967).https://doi.org/JGREA2

  33. 33. V. Vacquier, S. Uyeda, M. Yasui, J. G. Sclater, C. Corry, T. Watanabe, Bull. Earthq. Res. Insti. 44, 1526 (1966).https://doi.org/TDJKAZ

  34. 34. E. R. Oxburgh, D. L. Turcotte, Nature 218, 1041 (1968); https://doi.org/NATUAS
    D. P. McKenzie, J. G. Sclater, J. Geophys. Res. 73, 3173 (1968).https://doi.org/JGREA2

  35. 35. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Oxford University Press (1961).

  36. 36. W. V. R. Malkus, G. Veronis, J. Fluid Mech. 4, 225 (1958); https://doi.org/JFLSA7
    H. L. Kuo, J. Fluid Mech. 10, 611 (1961); https://doi.org/JFLSA7
    G. W. Platzman, J. Fluid Mech. 23, 481 (1965).https://doi.org/JFLSA7

  37. 37. D. L. Turcotte, E. R. Oxburgh, J. Fluid Mech. 28, 29 (1967).https://doi.org/JFLSA7

  38. 38. E. R. Oxburgh, D. L. Turcotte, J. Geophys. Res. 73, 2643 (1968).https://doi.org/JGREA2

  39. 39. M. G. Langseth, X. LePichon, M. Ewing, J. Geophys. Res. 71, 5321 (1966).https://doi.org/JGREA2

  40. 40. D. P. McKenzie, J. Geophys. Res. 72, 6261 (1967).https://doi.org/JGREA2

  41. 41. H. A. Lubimova, J. Phys. Earth 8, 11 (1960).https://doi.org/JPHEAF

  42. 42. T. Rikitake, Bull. Earthq. Res. Insti., Tokyo Univ. 30, 13 (1952); https://doi.org/TDJKAZ
    D. C. Tozer, Phys. Chem. Earth 3, 414 (1959).

  43. 43. J. T. Wilson, Nature 207, 343 (1965).https://doi.org/NATUAS

  44. 44. W. J. Morgan, J. Geophys. Res. 73, 1959 (1968).https://doi.org/JGREA2

  45. 45. B. Isacks, J. Oliver, and L. R. Sykes, J. Geophys. Res. 73, 5855 (1968).https://doi.org/JGREA2

More about the Authors

Donald L. Turcotte. Cornell University.

E. Ronald Oxburgh. St. Edmund Hall, University of Oxford.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1969_04.jpeg

Volume 22, Number 4

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.