Condensed‐matter physics
DOI: 10.1063/1.2915658
Computers are playing an integral role in both experimental and theoretical condensed‐matter physics: In laboratories they are being used to control experiments as well as to gather and analyze data; in theoretical studies they provide the means for making detailed predictions for realistic models, for exploring systems that cannot be realized in the laboratory, such as four‐dimensional systems undergoing phase transitions or materials under extreme conditions of pressure or temperature, and for complicated symbolic manipulations. Often computers provide an essential link between experiment and theory, allowing experimentalists to test critically theoretical predictions and allowing theorists to make predictions for realistic models.
References
1. R. H. Simoyi, A. Wolf, H. L. Swinney, Phys. Rev. Lett. 49, 245 (1982).https://doi.org/PRLTAO
2. M. T. Yin, M. L. Cohen, Phys. Rev. B 26, 5668 (1982).
3. V. L. Moruzzi, J. F. Janak, A. L. Williams, Calculated Electronic Properties of Metals, Pergamon, New York (1978).
4. J. R. Smith, J. G. Gay, F. J. Arlinghaus, Phys. Rev. B 21, 2201 (1980).https://doi.org/PRBMDO
5. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953).https://doi.org/JCPSA6
6. J. A. Barker, J. Henderson, Rev. Mod. Phys. 48, 588 (1976).https://doi.org/RMPHAT
7. K. Binder, Monte Carlo methods in statistical physics, Springer, New York (1979).
8. K. Binder, W. Kinzel, D. Stauffer, Z. Physik B 36, 161 (1979); https://doi.org/ZPBBDJ
experimental data from H. Maltta, W. Felsch, Phys. Rev. B 20, 1245 (1979).https://doi.org/PRBMDO9. R. Swendsen, Phys. Rev. Lett. 42, 859 (1979).https://doi.org/PRLTAO
10. A. N. Berker, S. Ostlund, F. A. Putnam, Phys. Rev. B 17, 3650 (1978).https://doi.org/PLRBAQ
11. R. H. G. Helleman, ed., Proc. Conf. Nonlinear Dynamics, December 1980,
Ann. N.Y. Acad. Sci. 357 (1982).https://doi.org/ANYAA912. J. C. Bonner, M. E. Fisher, Phys. Rev. A 135, 610 (1964).
13. K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).https://doi.org/RMPHAT
14. N. Andrei, J. Lowenstein, Phys. Rev. Lett. 46, 356 (1981).https://doi.org/PRLTAO
15. W. McMillan, Phys. Rev. A 138, 442 (1965);
R. M. Panoff, J. W. Clark, M. A. Lee, K. E. Schmidt, M. H. Kalos, G. V. Chester, Phys. Rev. Lett. 48, 1675 (1982).https://doi.org/PRLTAO16. M. Kalos, Phys. Rev. 128, 1791 (1962); https://doi.org/PHRVAO
M. Kalos, Phys. Rev. A 2, 250 (1970); https://doi.org/PLRAAN
M. Kalos, M. Lee, P. Whitlock and C. Chester, Phys. Rev. B 24, 115 (1981).https://doi.org/PRBMDO17. D. M. Ceperley, B. J. Alder, Physica 108B, 875 (1981).
18. M. Lee, K. Schmidt, M. Kalos, G. Chester, Phys. Rev. Lett. 46, 728 (1981).https://doi.org/PRLTAO
19. J. E. Hirsch, D. J. Scalapino, R. L. Sugar, R. Blankenbecler, Phys. Rev. Lett. 47, 1628 (1981) https://doi.org/PRLTAO
and J. E. Hirsch, D. J. Scalapino, R. L. Sugar, R. Blankenbecler, Phys. Rev. B 26, 5033 (1982).https://doi.org/PRBMDO20. J. Kuti, Phys. Rev. Lett. 49, 183 (1982).https://doi.org/PRLTAO
21. J. E. Hirsch, D. J. Scalapino, Phys. Rev. to be published.
22. J. E. Hirsch, E. Fradkin, Phys. Rev. Lett. 49, 402 (1982).https://doi.org/PRLTAO
23. R. B. Pearson, J. L. Richardson, D. Toussaint, to be published in CACM.
More about the Authors
Jorge E. Hirsch. University of California, San Diego.
Douglas J. Scalapino. University of California, Santa Barbara.