Computational Materials Science: The Era of Applied Quantum Mechanics
DOI: 10.1063/1.882840
For many centuries, materials were discovered, mined, and processed in a largely serendipitous way. However, the characterization of the atom and the progress made in x‐ray diffraction during the early years of this century started a quest for a theory of materials in terms of their atomic constituents. Later decades saw scientists developing many qualitative and semi‐quantitative models that explained the principles of atomic cohesion and the basic properties of semiconductors, metals, and salts. Considering their simplicity, some of the models were surprisingly accurate and led to remarkable progress. However, for most materials of current interest, the interatomic interactions are intricate enough to require fairly elaborate models. Fortunately, we are entering an era in which high‐performance computing is coming into its own, allowing true predictive simulations of complex materials to be made from information on their individual atoms.
References
1. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964). https://doi.org/PHRVAO
W. Kohn, L. Sham, Phys. Rev. 140, A1133 (1965). https://doi.org/PHRVAO
R. M. Dreizler, E. K. U. Gross, Density Functional Theory, Springer, Berlin (1990).2. Q.‐M. Zhang, J.‐YYi, J. Bernholc, Phys. Rev. Lett. 66, 2633 (1991). https://doi.org/PRLTAO
R. L. Cappelletti, J. R. D. Copley, W. A. Kamitakahara, F. Li, J. S. Lannin, D. Ramage, Phys. Rev. Lett. 66, 3261 (1991).https://doi.org/PRLTAO3. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1981).https://doi.org/PRBMDO
4. D. R. Hamann, M. Schluter, C. Chiang, Phys. Rev. Lett. 43, 1494 (1979).https://doi.org/PRLTAO
5. R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).https://doi.org/PRLTAO
6. M. C. Payne, D. C. Allan, M. P. Teter, T. A. Arias, J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).https://doi.org/RMPHAT
7. M. Coté, J. C. Grossman, M. L. Cohen, S. G. Louie, Phys. Rev. Lett. 81, 697 (1998).https://doi.org/PRLTAO
8. A. Maiti, M. F. Chisholm, S. J. Pennycook, S. T. Pantelides, Phys. Rev. Lett. 77, 1306 (1996).
M. F. Chisholm, A. Maiti, S. J. Pennycook, S. T. Pantelides, Phys. Rev. Lett. 81, 132 (1998).9. T. Oda, A. Pasquarello, R. Car, Phys. Rev. Lett. 80, 3622 (1998).https://doi.org/PRLTAO
10. E. L. Briggs, D. J. Sullivan, J. Bernholc, Phys. Rev. B 52, R5471 (1995). https://doi.org/PRBMDO
J. R. Chelikowsky, N. Troullier, Y. Saad, Phys. Rev. Lett. 72, 1240 (1994). https://doi.org/PRLTAO
F. Gygi, G. Galli, Phys. Rev. B 52, R2229 (1995). https://doi.org/PRBMDO
K. A. Iyer, M. P. Merrick, T. L. Beck, J. Chem. Phys. 103, 227 (1995). https://doi.org/JCPSA6
G. Zumbach, N. A. Modine, E. Kaxiras, Solid State Comm. 99, 57 (1996).https://doi.org/SSCOA411. I. Vasiliev, S. Ogut, J. R. Chelikowsky, Phys. Rev. Lett. 82, 1919 (1999).https://doi.org/PRLTAO
12. M. BuongiornoNardelli, B. I. Yakobson, J. Bernholc, Phys. Rev. B 57, R4277 (1998).
13. G. Galli, Current Opinion in Solid State & Materials Science 1, 864 (1996).
P. Ordejon, D. A. Drabold, R. M. Martin, M. P. Grumbach, Phys. Rev. B 51, 1456 (1995).https://doi.org/PRBMDO14. N. Marzari, D. Vanderbilt, Phys. Rev. B 56, 12847 (1999).https://doi.org/PRBMDO
15. L. Hedin, Phys. Rev. 139, A796 (1965). https://doi.org/PHRVAO
M. S. Hybertsen, S. G. Louie, Phys. Rev. B 34, 5390 (1986).https://doi.org/PRBMDO16. F. Aryasetiawan, O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998).https://doi.org/RPPHAG
17. D. M. Ceperley, L. Mitas, Adv. Chem. Phys. 93, 1 (1996).https://doi.org/ADCPAA
18. W. L. Briggs, A Multigrid Tutorial, SIAM Books, Philadelphia (1987).
A. Brandt, Math. Comp. 31, 333 (1977). https://doi.org/MCMPAF
A. Brandt, GMD Studien 85, 1 (1984).
More about the Authors
Jerzy Bernholc. North Carolina State University in Raleigh.