Discover
/
Article

Computational Materials Science: The Era of Applied Quantum Mechanics

SEP 01, 1999
The properties of new and artificially structured materials can be predicted and explained entirely by computations, using atomic numbers as the only input.
Jerzy Bernholc

For many centuries, materials were discovered, mined, and processed in a largely serendipitous way. However, the characterization of the atom and the progress made in x‐ray diffraction during the early years of this century started a quest for a theory of materials in terms of their atomic constituents. Later decades saw scientists developing many qualitative and semi‐quantitative models that explained the principles of atomic cohesion and the basic properties of semiconductors, metals, and salts. Considering their simplicity, some of the models were surprisingly accurate and led to remarkable progress. However, for most materials of current interest, the interatomic interactions are intricate enough to require fairly elaborate models. Fortunately, we are entering an era in which high‐performance computing is coming into its own, allowing true predictive simulations of complex materials to be made from information on their individual atoms.

This article is only available in PDF format

References

  1. 1. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964). https://doi.org/PHRVAO
    W. Kohn, L. Sham, Phys. Rev. 140, A1133 (1965). https://doi.org/PHRVAO
    R. M. Dreizler, E. K. U. Gross, Density Functional Theory, Springer, Berlin (1990).

  2. 2. Q.‐M. Zhang, J.‐YYi, J. Bernholc, Phys. Rev. Lett. 66, 2633 (1991). https://doi.org/PRLTAO
    R. L. Cappelletti, J. R. D. Copley, W. A. Kamitakahara, F. Li, J. S. Lannin, D. Ramage, Phys. Rev. Lett. 66, 3261 (1991).https://doi.org/PRLTAO

  3. 3. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1981).https://doi.org/PRBMDO

  4. 4. D. R. Hamann, M. Schluter, C. Chiang, Phys. Rev. Lett. 43, 1494 (1979).https://doi.org/PRLTAO

  5. 5. R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).https://doi.org/PRLTAO

  6. 6. M. C. Payne, D. C. Allan, M. P. Teter, T. A. Arias, J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).https://doi.org/RMPHAT

  7. 7. M. Coté, J. C. Grossman, M. L. Cohen, S. G. Louie, Phys. Rev. Lett. 81, 697 (1998).https://doi.org/PRLTAO

  8. 8. A. Maiti, M. F. Chisholm, S. J. Pennycook, S. T. Pantelides, Phys. Rev. Lett. 77, 1306 (1996).
    M. F. Chisholm, A. Maiti, S. J. Pennycook, S. T. Pantelides, Phys. Rev. Lett. 81, 132 (1998).

  9. 9. T. Oda, A. Pasquarello, R. Car, Phys. Rev. Lett. 80, 3622 (1998).https://doi.org/PRLTAO

  10. 10. E. L. Briggs, D. J. Sullivan, J. Bernholc, Phys. Rev. B 52, R5471 (1995). https://doi.org/PRBMDO
    J. R. Chelikowsky, N. Troullier, Y. Saad, Phys. Rev. Lett. 72, 1240 (1994). https://doi.org/PRLTAO
    F. Gygi, G. Galli, Phys. Rev. B 52, R2229 (1995). https://doi.org/PRBMDO
    K. A. Iyer, M. P. Merrick, T. L. Beck, J. Chem. Phys. 103, 227 (1995). https://doi.org/JCPSA6
    G. Zumbach, N. A. Modine, E. Kaxiras, Solid State Comm. 99, 57 (1996).https://doi.org/SSCOA4

  11. 11. I. Vasiliev, S. Ogut, J. R. Chelikowsky, Phys. Rev. Lett. 82, 1919 (1999).https://doi.org/PRLTAO

  12. 12. M. BuongiornoNardelli, B. I. Yakobson, J. Bernholc, Phys. Rev. B 57, R4277 (1998).

  13. 13. G. Galli, Current Opinion in Solid State & Materials Science 1, 864 (1996).
    P. Ordejon, D. A. Drabold, R. M. Martin, M. P. Grumbach, Phys. Rev. B 51, 1456 (1995).https://doi.org/PRBMDO

  14. 14. N. Marzari, D. Vanderbilt, Phys. Rev. B 56, 12847 (1999).https://doi.org/PRBMDO

  15. 15. L. Hedin, Phys. Rev. 139, A796 (1965). https://doi.org/PHRVAO
    M. S. Hybertsen, S. G. Louie, Phys. Rev. B 34, 5390 (1986).https://doi.org/PRBMDO

  16. 16. F. Aryasetiawan, O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998).https://doi.org/RPPHAG

  17. 17. D. M. Ceperley, L. Mitas, Adv. Chem. Phys. 93, 1 (1996).https://doi.org/ADCPAA

  18. 18. W. L. Briggs, A Multigrid Tutorial, SIAM Books, Philadelphia (1987).
    A. Brandt, Math. Comp. 31, 333 (1977). https://doi.org/MCMPAF
    A. Brandt, GMD Studien 85, 1 (1984).

More about the authors

Jerzy Bernholc, North Carolina State University in Raleigh.

Related content
/
Article
Beneath the ice shelves of the frozen continent, a hidden boundary layer of turbulent ocean is determining Antarctica’s fate.
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
This Content Appeared In
pt-cover_1999_09.jpeg

Volume 52, Number 9

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.