Discover
/
Article

Computational Materials Science: The Era of Applied Quantum Mechanics

SEP 01, 1999
The properties of new and artificially structured materials can be predicted and explained entirely by computations, using atomic numbers as the only input.

DOI: 10.1063/1.882840

Jerzy Bernholc

For many centuries, materials were discovered, mined, and processed in a largely serendipitous way. However, the characterization of the atom and the progress made in x‐ray diffraction during the early years of this century started a quest for a theory of materials in terms of their atomic constituents. Later decades saw scientists developing many qualitative and semi‐quantitative models that explained the principles of atomic cohesion and the basic properties of semiconductors, metals, and salts. Considering their simplicity, some of the models were surprisingly accurate and led to remarkable progress. However, for most materials of current interest, the interatomic interactions are intricate enough to require fairly elaborate models. Fortunately, we are entering an era in which high‐performance computing is coming into its own, allowing true predictive simulations of complex materials to be made from information on their individual atoms.

References

  1. 1. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964). https://doi.org/PHRVAO
    W. Kohn, L. Sham, Phys. Rev. 140, A1133 (1965). https://doi.org/PHRVAO
    R. M. Dreizler, E. K. U. Gross, Density Functional Theory, Springer, Berlin (1990).

  2. 2. Q.‐M. Zhang, J.‐YYi, J. Bernholc, Phys. Rev. Lett. 66, 2633 (1991). https://doi.org/PRLTAO
    R. L. Cappelletti, J. R. D. Copley, W. A. Kamitakahara, F. Li, J. S. Lannin, D. Ramage, Phys. Rev. Lett. 66, 3261 (1991).https://doi.org/PRLTAO

  3. 3. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1981).https://doi.org/PRBMDO

  4. 4. D. R. Hamann, M. Schluter, C. Chiang, Phys. Rev. Lett. 43, 1494 (1979).https://doi.org/PRLTAO

  5. 5. R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).https://doi.org/PRLTAO

  6. 6. M. C. Payne, D. C. Allan, M. P. Teter, T. A. Arias, J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).https://doi.org/RMPHAT

  7. 7. M. Coté, J. C. Grossman, M. L. Cohen, S. G. Louie, Phys. Rev. Lett. 81, 697 (1998).https://doi.org/PRLTAO

  8. 8. A. Maiti, M. F. Chisholm, S. J. Pennycook, S. T. Pantelides, Phys. Rev. Lett. 77, 1306 (1996).
    M. F. Chisholm, A. Maiti, S. J. Pennycook, S. T. Pantelides, Phys. Rev. Lett. 81, 132 (1998).

  9. 9. T. Oda, A. Pasquarello, R. Car, Phys. Rev. Lett. 80, 3622 (1998).https://doi.org/PRLTAO

  10. 10. E. L. Briggs, D. J. Sullivan, J. Bernholc, Phys. Rev. B 52, R5471 (1995). https://doi.org/PRBMDO
    J. R. Chelikowsky, N. Troullier, Y. Saad, Phys. Rev. Lett. 72, 1240 (1994). https://doi.org/PRLTAO
    F. Gygi, G. Galli, Phys. Rev. B 52, R2229 (1995). https://doi.org/PRBMDO
    K. A. Iyer, M. P. Merrick, T. L. Beck, J. Chem. Phys. 103, 227 (1995). https://doi.org/JCPSA6
    G. Zumbach, N. A. Modine, E. Kaxiras, Solid State Comm. 99, 57 (1996).https://doi.org/SSCOA4

  11. 11. I. Vasiliev, S. Ogut, J. R. Chelikowsky, Phys. Rev. Lett. 82, 1919 (1999).https://doi.org/PRLTAO

  12. 12. M. BuongiornoNardelli, B. I. Yakobson, J. Bernholc, Phys. Rev. B 57, R4277 (1998).

  13. 13. G. Galli, Current Opinion in Solid State & Materials Science 1, 864 (1996).
    P. Ordejon, D. A. Drabold, R. M. Martin, M. P. Grumbach, Phys. Rev. B 51, 1456 (1995).https://doi.org/PRBMDO

  14. 14. N. Marzari, D. Vanderbilt, Phys. Rev. B 56, 12847 (1999).https://doi.org/PRBMDO

  15. 15. L. Hedin, Phys. Rev. 139, A796 (1965). https://doi.org/PHRVAO
    M. S. Hybertsen, S. G. Louie, Phys. Rev. B 34, 5390 (1986).https://doi.org/PRBMDO

  16. 16. F. Aryasetiawan, O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998).https://doi.org/RPPHAG

  17. 17. D. M. Ceperley, L. Mitas, Adv. Chem. Phys. 93, 1 (1996).https://doi.org/ADCPAA

  18. 18. W. L. Briggs, A Multigrid Tutorial, SIAM Books, Philadelphia (1987).
    A. Brandt, Math. Comp. 31, 333 (1977). https://doi.org/MCMPAF
    A. Brandt, GMD Studien 85, 1 (1984).

More about the Authors

Jerzy Bernholc. North Carolina State University in Raleigh.

This Content Appeared In
pt-cover_1999_09.jpeg

Volume 52, Number 9

Related content
/
Article
Technical knowledge and skills are only some of the considerations that managers have when hiring physical scientists. Soft skills, in particular communication, are also high on the list.
/
Article
Professional societies can foster a sense of belonging and offer early-career scientists opportunities to give back to their community.
/
Article
Research exchanges between US and Soviet scientists during the second half of the 20th century may be instructive for navigating today’s debates on scientific collaboration.
/
Article
The Eisenhower administration dismissed the director of the National Bureau of Standards in 1953. Suspecting political interference with the agency’s research, scientists fought back—and won.
/
Article
Alternative undergraduate physics courses expand access to students and address socioeconomic barriers that prevent many of them from entering physics and engineering fields. The courses also help all students develop quantitative skills.
/
Article
Defying the often-perceived incompatibility between the two subjects, some physicists are using poetry to communicate science and to explore the human side of their work.

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.