Discover
/
Article

Computational Materials Science: The Era of Applied Quantum Mechanics

SEP 01, 1999
The properties of new and artificially structured materials can be predicted and explained entirely by computations, using atomic numbers as the only input.

DOI: 10.1063/1.882840

Jerzy Bernholc

For many centuries, materials were discovered, mined, and processed in a largely serendipitous way. However, the characterization of the atom and the progress made in x‐ray diffraction during the early years of this century started a quest for a theory of materials in terms of their atomic constituents. Later decades saw scientists developing many qualitative and semi‐quantitative models that explained the principles of atomic cohesion and the basic properties of semiconductors, metals, and salts. Considering their simplicity, some of the models were surprisingly accurate and led to remarkable progress. However, for most materials of current interest, the interatomic interactions are intricate enough to require fairly elaborate models. Fortunately, we are entering an era in which high‐performance computing is coming into its own, allowing true predictive simulations of complex materials to be made from information on their individual atoms.

This article is only available in PDF format

References

  1. 1. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964). https://doi.org/PHRVAO
    W. Kohn, L. Sham, Phys. Rev. 140, A1133 (1965). https://doi.org/PHRVAO
    R. M. Dreizler, E. K. U. Gross, Density Functional Theory, Springer, Berlin (1990).

  2. 2. Q.‐M. Zhang, J.‐YYi, J. Bernholc, Phys. Rev. Lett. 66, 2633 (1991). https://doi.org/PRLTAO
    R. L. Cappelletti, J. R. D. Copley, W. A. Kamitakahara, F. Li, J. S. Lannin, D. Ramage, Phys. Rev. Lett. 66, 3261 (1991).https://doi.org/PRLTAO

  3. 3. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1981).https://doi.org/PRBMDO

  4. 4. D. R. Hamann, M. Schluter, C. Chiang, Phys. Rev. Lett. 43, 1494 (1979).https://doi.org/PRLTAO

  5. 5. R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).https://doi.org/PRLTAO

  6. 6. M. C. Payne, D. C. Allan, M. P. Teter, T. A. Arias, J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).https://doi.org/RMPHAT

  7. 7. M. Coté, J. C. Grossman, M. L. Cohen, S. G. Louie, Phys. Rev. Lett. 81, 697 (1998).https://doi.org/PRLTAO

  8. 8. A. Maiti, M. F. Chisholm, S. J. Pennycook, S. T. Pantelides, Phys. Rev. Lett. 77, 1306 (1996).
    M. F. Chisholm, A. Maiti, S. J. Pennycook, S. T. Pantelides, Phys. Rev. Lett. 81, 132 (1998).

  9. 9. T. Oda, A. Pasquarello, R. Car, Phys. Rev. Lett. 80, 3622 (1998).https://doi.org/PRLTAO

  10. 10. E. L. Briggs, D. J. Sullivan, J. Bernholc, Phys. Rev. B 52, R5471 (1995). https://doi.org/PRBMDO
    J. R. Chelikowsky, N. Troullier, Y. Saad, Phys. Rev. Lett. 72, 1240 (1994). https://doi.org/PRLTAO
    F. Gygi, G. Galli, Phys. Rev. B 52, R2229 (1995). https://doi.org/PRBMDO
    K. A. Iyer, M. P. Merrick, T. L. Beck, J. Chem. Phys. 103, 227 (1995). https://doi.org/JCPSA6
    G. Zumbach, N. A. Modine, E. Kaxiras, Solid State Comm. 99, 57 (1996).https://doi.org/SSCOA4

  11. 11. I. Vasiliev, S. Ogut, J. R. Chelikowsky, Phys. Rev. Lett. 82, 1919 (1999).https://doi.org/PRLTAO

  12. 12. M. BuongiornoNardelli, B. I. Yakobson, J. Bernholc, Phys. Rev. B 57, R4277 (1998).

  13. 13. G. Galli, Current Opinion in Solid State & Materials Science 1, 864 (1996).
    P. Ordejon, D. A. Drabold, R. M. Martin, M. P. Grumbach, Phys. Rev. B 51, 1456 (1995).https://doi.org/PRBMDO

  14. 14. N. Marzari, D. Vanderbilt, Phys. Rev. B 56, 12847 (1999).https://doi.org/PRBMDO

  15. 15. L. Hedin, Phys. Rev. 139, A796 (1965). https://doi.org/PHRVAO
    M. S. Hybertsen, S. G. Louie, Phys. Rev. B 34, 5390 (1986).https://doi.org/PRBMDO

  16. 16. F. Aryasetiawan, O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998).https://doi.org/RPPHAG

  17. 17. D. M. Ceperley, L. Mitas, Adv. Chem. Phys. 93, 1 (1996).https://doi.org/ADCPAA

  18. 18. W. L. Briggs, A Multigrid Tutorial, SIAM Books, Philadelphia (1987).
    A. Brandt, Math. Comp. 31, 333 (1977). https://doi.org/MCMPAF
    A. Brandt, GMD Studien 85, 1 (1984).

More about the Authors

Jerzy Bernholc. North Carolina State University in Raleigh.

Related content
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
/
Article
Bottom-up self-assembly is a powerful approach to engineering at small scales. Special strategies are needed to formulate components that assemble into predetermined shapes with precise sizes.
/
Article
The polymath scientist leaves behind a monumental legacy in both the scientific and political realms.
This Content Appeared In
pt-cover_1999_09.jpeg

Volume 52, Number 9

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.