Discover
/
Article

Charge‐density waves in transition‐metal compounds

APR 01, 1979
At low temperatures some crystals undergo a phase transition to a state in which the electron density displays periodic modulations incommensurate with the crystal lattice.
Francis J. Di Salvo
T. Maurice Rice

The vast majority of compounds crystallize into a regular form in which a unit cell is repeated indefinitely, except for generally localized defects, impurities and boundaries. In a few compounds, however, at sufficiently low temperatures interactions between electrons and ions across unit cells make this regular array unstable with respect to small distortions. The stable state is one in which the charge density, the spin density, or the ion positions display long‐period modulations. The period of these modulations may be incommensurate with the spacing of the underlying lattice, so that the material is no longer truly periodic, having two unrelated periods. In this article we shall focus on charge‐density waves, in which the electron density and also the ion positions exhibit a periodic variation.

This article is only available in PDF format

References

  1. 1. J. A. Wilson, F. J. DiSalvo, S. Mahajan, Adv. in Physics 24, 117 (1975); https://doi.org/ADPHAH
    F. J. Di‐Salvo, in Electron‐Phonon Interactions and Phase Transitions, T. Riste ed., Plenum, New York, (1977).

  2. 2. R. Comés, M. Lambert, H. Launois, H. R. Zeller, Phys. Rev. B8, 571 (1973).https://doi.org/PLRBAQ

  3. 3. A. W. Overhauser, Phys. Rev. 128, 1437 (1962); https://doi.org/PHRVAO
    A. Arrott, S. A. Werner, H. Kendrick, Phys. Rev. Lett. 14, 1022 (1965).https://doi.org/PRLTAO

  4. 4. M. Iizumi, J. D. Axe, G. Shirane, K. Shimaoka, Phys. Rev. B15, 4392 (1977).https://doi.org/PLRBAQ

  5. 5. R. E. Peierls, Quantum Theory of Solids Oxford Press (1955) page 108.

  6. 6. H. Fröhlich, Proc. Roy. Soc. A223, 296 (1954).

  7. 7. A. W. Overhauser, Phys. Rev. 167, 691 (1963).https://doi.org/PHRVAO

  8. 8. D. E. Moncton, J. D. Axe, F. J. DiSalvo, Phys. Rev. Lett. 34, 734 (1975); https://doi.org/PRLTAO
    D. E. Moncton, J. D. Axe, F. J. DiSalvo, Phys. Rev. B16, 801 (1977).https://doi.org/PLRBAQ

  9. 9. W. L. McMillan, Phys. Rev. B12, 1187 (1975); https://doi.org/PLRBAQ
    W. L. McMillan, B14, 1496 (1976).https://doi.org/PLRBAQ , Phys. Rev. B

  10. 10. F. C. Frank, J. H. van der Merwe, Proc. Roy. Soc. A198, 205 (1949).

  11. 11. K. Nakanishi, H. Shiba, J. Phys. Soc. Japan 43, 1839 (1977).https://doi.org/JUPSAU

  12. 12. S. A. Jackson, P. A. Lee, T. M. Rice, Phys. Rev. B17, 3611 (1978); https://doi.org/PLRBAQ
    S. A. Jackson, P. A. Lee, Phys. Rev. B18, 2500 (1978).https://doi.org/PLRBAQ

  13. 13. K. Nakanishi, H. Shiba, J. Phys. Soc. Japan 44, 1465 (1978).https://doi.org/JUPSAU

  14. 14. P. A. Lee, T. M. Rice, P. W. Anderson, Solid State Comm. 14, 703 (1974).https://doi.org/SSCOA4

  15. 15. G. C. Kuper, Proc. Roy. Soc. A227, 214 (1955).

  16. 16. W. M. Lomer, Proc. Phys. Soc. (London) 80, 489 (1962).https://doi.org/PPSOAU

  17. 17. P. A. Fedders, P. C. Martin, Phys. Rev. 143, 245 (1966).https://doi.org/PHRVAO

  18. 18. A. W. Overhauser, Adv. in Physics (in press).

  19. 19. L. F. Mattheiss, Phys. Rev. B8, 3719 (1973).https://doi.org/PLRBAQ

  20. 20. T. M. Rice, G. K. Scott, Phys. Rev. Lett. 35, 120 (1975).https://doi.org/PRLTAO

  21. 21. W. L. McMillan, Phys. Rev. B16, 643 (1977).https://doi.org/PLRBAQ

  22. 22. R. Craven, S. F. Meyer, Phys. Rev. B16, 4583 (1977).https://doi.org/PLRBAQ

More about the Authors

Francis J. Di Salvo. Bell Labs, Murray Hill, New Jersey.

T. Maurice Rice. Bell Labs, Murray Hill, New Jersey.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1979_04.jpeg

Volume 32, Number 4

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.