Discover
/
Article

Charge‐Density‐Wave Conductors

MAY 01, 1996
Low‐dimensional metals with moving lattice modulations display a host of unusual properties, including gigantic dielectric constants and the ability to ‘remember’ electrical pulse lengths.
Robert E. Thorne

When metals are cooled, they often undergo a phase transition to a state exhibiting a new type of order. Metals such as iron and nickel become ferromagnetic below temperatures of several hundred degrees Celsius; electron spins order to produce a net magnetization in zero field. Other metals, such as lead and aluminum, become superconductors at cryogenic temperatures; electrons form Cooper pairs of opposite spin and momentum, leading to electrical conduction with zero resistance and to expulsion of magnetic fields.

This article is only available in PDF format

References

  1. 1. For comprehensive reviews of CDWs, see the following: Electronic Properties of Quasi‐One‐Dimensional Materials, P. Monceau, ed., Reidel, Dordrecht, The Netherlands (1985).
    G. Grüner, Rev. Mod. Phys. 60, 1129 (1988). https://doi.org/RMPHAT
    C. Schlenker, ed., Low‐Dimensional Electronic Properties of Molybdenum Bronzes and Oxides, Kluwer, Dordrecht, The Netherlands (1989).
    C. Schlenker, M. Greenblatt, eds., Physics and Chemistry of Low Dimensional Inorganic Conductors, Plenum, New York (1996) in press.

  2. 2. R. E. Peierls, Ann. Phys. Leipzig 4, 121 (1930).

  3. 3. For a review of the Peierls transition, see J. P. Pouget, R. Comes, in Charge Density Waves in Solids, L. P. Gor’kov, G. Grüner, eds., North Holland, Amsterdam (1989), p. 85.

  4. 4. J. Bardeen, Phys. Rev. 59, 928 (1941).https://doi.org/PHRVAO

  5. 5. H. Frohlich, Proc. R. Soc. A 223, 296 (1954).https://doi.org/PRLAAZ

  6. 6. P. Monceau, N. P. Ong, A. M. Portis, A. Meerschaut, J. Rouxel, Phys. Rev. Lett. 37, 602 (1976).https://doi.org/PRLTAO

  7. 7. R. M. Fleming, C. C. Grimes, Phys. Rev. Lett. 42, 1423 (1979).https://doi.org/PRLTAO

  8. 8. R. P. Hall, M. Sherwin, A. Zettl, Phys. Rev. B 29, 7076 (1984). https://doi.org/PRBMDO
    J. Levy, M. S. Sherwin, Phys. Rev. Lett. 70, 2957 (1993).https://doi.org/PRLTAO

  9. 9. J. W. Brill, in Physics and Chemistry of Low Dimensional Inorganic Conductors, C. Schlenker, M. Greenblatt, eds., Plenum, New York (1996), in press.

  10. 10. For reviews of spin‐density‐wave systems, see D. Jerome, in Physics and Chemistry of Low Dimensional Inorganic Conductors, C. Schlenker, M. Greenblatt, eds., Plenum, New York (1996), in press;
    G. Grüner, Rev. Mod. Phys. 66, 1 (1994).https://doi.org/RMPHAT

  11. 11. H. Fukuyama, P. A. Lee, Phys. Rev. B 17, 535 (1978). https://doi.org/PLRBAQ
    P. A. Lee, T. M. Rice, Phys. Rev. B 19, 3970 (1979).https://doi.org/PRBMDO

  12. 12. H. Matsukawa, J. Phys. Soc. Jpn. 56, 1522 (1987) https://doi.org/JUPSAU
    and H. Matsukawa, 57, 3463 (1988).
    O. Narayan, D. S. Fisher, Phys. Rev. B 46, 11520 (1992). https://doi.org/PRBMDO
    C. R. Myers, J. P. Sethna, Phys. Rev. B 47, 11171 (1993). https://doi.org/PRBMDO
    A. A. Middleton, D. S. Fisher, Phys. Rev. B 47, 3530 (1993).https://doi.org/PRBMDO

  13. 13. D. S. Fisher, Phys. Rev. Lett. 68, 670 (1983).https://doi.org/PRLTAO

  14. 14. R. M. Fleming, L. F. Schneemeyer, Phys. Rev. B 33, 2930 (1986). https://doi.org/PRBMDO
    M. Ido, Y. Okajima, M. Oda, J. Phys. Soc. Jpn. 55, 2106 (1986). https://doi.org/JUPSAU
    C. Tang, K. Wiesenfeld, P. Bak, S. Coppersmith, P. Littlewood, Phys. Rev. Lett. 58, 1161 (1987). https://doi.org/PRLTAO
    S. N. Coppersmith, P. B. Littlewood, Phys. Rev. B 36, 311 (1987).https://doi.org/PRBMDO

  15. 15. For a review, see J. C. Gill, in Physics and Chemistry of Low Dimensional Inorganic Conductors, C. Schlenker, M. Greenblatt, eds., Plenum, New York (1996), in press.

  16. 16. G. Mihaly, Physica Scripta T 29, 67 (1989).
    P. B. Littlewood, Solid State Commun. 65, 1347 (1988). https://doi.org/SSCOA4
    K. Biljakovic, J. C. Lasjaunias, P. Monceau, F. Levy, Phys. Rev. Lett. 67, 1902 (1991).https://doi.org/PRLTAO

  17. 17. T. L. Adelman, S. V. Zaitsev‐Zotov, R. E. Thorne, Phys. Rev. Lett. 74, 5264 (1995).https://doi.org/PRLTAO

  18. 18. H. S. J. van der Zant, O. C. Mantel, C. Dekker, J. E. Mooij, C. Traeholt, “Thin‐film growth of the charge‐density‐wave oxide Rb0.3MoO3,” preprint, Delft University of Technology, Delft, The Netherlands.

More about the Authors

Robert E. Thorne. Cornell University, Ithaca, New York.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1996_05.jpeg

Volume 49, Number 5

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.