Discover
/
Article

Chaotic Dynamics and the Origin of Statistical Laws

AUG 01, 1999
Chaotic dynamics in real systems does not provide finite relaxation time to equilibrium or fast decay of fluctuations, and chaotic systems are not completely random in the sense originally postulated for statistical systems. These properties may require rethinking some of the fundamental assumptions of thermodynamics.
George M. Zaslavsky

The problem of the foundation of statistical physics emerged with the derivation by Ludwig Boltzmann of a kinetic equation for a gas of molecules that required monotonic growth of entropy. Boltzmann’s theory leads to modern thermodynamics, and, for example, to the impossibility of gas spontaneously gathering in one part of a container in the absence of external forces. This result, known as the H‐theorem, met with strong contemporary opposition, especially from mathematician Ernst Zermelo.

This article is only available in PDF format

References

  1. 1. L. Boltzmann, Wien Ber. 66, 275 (1872).

  2. 2. E. Zermelo, Wied. Ann. 57, 485 (1896).

  3. 3. P. Ehrenfest and T. Ehrenfest, The Conceptual Foundations of the Statistical Approach in Mechanics, Cornell U. P., Ithaca, N.Y. (1959).

  4. 4. M. Kac, Probability and Related Topics in Physical Sciences, Interscience, New York (1957).

  5. 5. E. Fermi, J. Pasta. S. Ulam, Los Alamos Scientific Report LA‐1940 (1955),
    reprinted in Collected Works of Enrico Fermi, vol. 2, p. 978, U. of Chicago P., Chicago (1965).
    N. Zabusky, J. Comput. Physics 43, 195 (1981).https://doi.org/JCTPAH

  6. 6. B. V. Chirikov, Physics Reports 52, 263 (1981);
    N. S. Krylov, Works on the Foundations of Statistical Physics, Princeton U. P., Princeton, N.J. (1979).

  7. 7. G. M. Zaslavsky, Chaos in Dynamic Systems, Harwood, New York (1984).

  8. 8. H. S. Leff and A. F. Rex, eds., Maxwell’s Demon, Princeton U. P., Princeton, N.J. (1990).

  9. 9. M. F. Shlesinger, G. M. Zaslavsky, J. Klafter, Nature 363, 31 (1993).https://doi.org/NATUAS

  10. 10. J. D. Meiss, Rev. Mod. Phys. 64, 795 (1992).https://doi.org/RMPHAT

  11. 11. L. Kuznetsov, G. M. Zaslavsky, Phys. Rev. E 58, 7330 (1998). https://doi.org/PLEEE8
    A. Babiano, G. Boffetta, A. Provenzale, A. Vulpiani, Phys. Fluids 6, 2465 (1994).https://doi.org/PHFLE6

  12. 12. G. M. Zaslavsky, D. Stevens, H. Weitzner, Phys. Rev. E 48, 1683 (1993). https://doi.org/PLEEE8
    M. F. Shlesinger, B. J. West, J. Klafter, Phys. Rev. Lett. 58, 1100 (1987). https://doi.org/PRLTAO
    T. Solomon, E. Weeks, H. Swinney, Phys. Rev. Lett. 71, 3975 (1993). https://doi.org/PRLTAO
    S. Benkadda, S. Kassibrakis, R. White, G. M. Zaslavsky, Phys. Rev. E 55, 4909 (1997).https://doi.org/PLEEE8

  13. 13. G. M. Zaslavsky, M. Edelman, B. Niyazov, Chaos 7, 159 (1997). https://doi.org/CHAOEH
    V. Afraimovich, G. M. Zaslavsky, Phys. Rev. E 55, 5418 (1997).https://doi.org/PLEEE8

  14. 14. J. Machta, J. Stat. Phys. 32, 555 (1983).https://doi.org/JSTPBS

  15. 15. G. M. Zaslavsky, Chaos 5, 653 (1995). https://doi.org/CHAOEH
    G. M. Zaslavsky, M. Edelman, Phys. Rev. E 56, 5310 (1997).https://doi.org/PLEEE8

  16. 16. E. W. Montroll, M. F. Shlesinger, in Studies in Statistical Mechanics, J. Lebowitz, E. Montroll, eds., North Holland, Amsterdam (1984), vol. 11, p. 1.
    M. F. Shlesinger, Ann. Rev. Phys. Chem. 39, 269 (1988).https://doi.org/ARPLAP

  17. 17. P. Lévy, Theorie de l’Addition des Variables Aletoires, Gauthier‐Villiars, Paris (1937).

  18. 18. B. Sundaram, G. M. Zaslavsky, Phys. Rev. E 59, 7231 (1999).https://doi.org/PLEEE8

More about the authors

George M. Zaslavsky, New York, University.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1999_08.jpeg

Volume 52, Number 8

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.