Discover
/
Article

Chaotic Dynamics and the Origin of Statistical Laws

AUG 01, 1999
Chaotic dynamics in real systems does not provide finite relaxation time to equilibrium or fast decay of fluctuations, and chaotic systems are not completely random in the sense originally postulated for statistical systems. These properties may require rethinking some of the fundamental assumptions of thermodynamics.

DOI: 10.1063/1.882777

George M. Zaslavsky

The problem of the foundation of statistical physics emerged with the derivation by Ludwig Boltzmann of a kinetic equation for a gas of molecules that required monotonic growth of entropy. Boltzmann’s theory leads to modern thermodynamics, and, for example, to the impossibility of gas spontaneously gathering in one part of a container in the absence of external forces. This result, known as the H‐theorem, met with strong contemporary opposition, especially from mathematician Ernst Zermelo.

This article is only available in PDF format

References

  1. 1. L. Boltzmann, Wien Ber. 66, 275 (1872).

  2. 2. E. Zermelo, Wied. Ann. 57, 485 (1896).

  3. 3. P. Ehrenfest and T. Ehrenfest, The Conceptual Foundations of the Statistical Approach in Mechanics, Cornell U. P., Ithaca, N.Y. (1959).

  4. 4. M. Kac, Probability and Related Topics in Physical Sciences, Interscience, New York (1957).

  5. 5. E. Fermi, J. Pasta. S. Ulam, Los Alamos Scientific Report LA‐1940 (1955),
    reprinted in Collected Works of Enrico Fermi, vol. 2, p. 978, U. of Chicago P., Chicago (1965).
    N. Zabusky, J. Comput. Physics 43, 195 (1981).https://doi.org/JCTPAH

  6. 6. B. V. Chirikov, Physics Reports 52, 263 (1981);
    N. S. Krylov, Works on the Foundations of Statistical Physics, Princeton U. P., Princeton, N.J. (1979).

  7. 7. G. M. Zaslavsky, Chaos in Dynamic Systems, Harwood, New York (1984).

  8. 8. H. S. Leff and A. F. Rex, eds., Maxwell’s Demon, Princeton U. P., Princeton, N.J. (1990).

  9. 9. M. F. Shlesinger, G. M. Zaslavsky, J. Klafter, Nature 363, 31 (1993).https://doi.org/NATUAS

  10. 10. J. D. Meiss, Rev. Mod. Phys. 64, 795 (1992).https://doi.org/RMPHAT

  11. 11. L. Kuznetsov, G. M. Zaslavsky, Phys. Rev. E 58, 7330 (1998). https://doi.org/PLEEE8
    A. Babiano, G. Boffetta, A. Provenzale, A. Vulpiani, Phys. Fluids 6, 2465 (1994).https://doi.org/PHFLE6

  12. 12. G. M. Zaslavsky, D. Stevens, H. Weitzner, Phys. Rev. E 48, 1683 (1993). https://doi.org/PLEEE8
    M. F. Shlesinger, B. J. West, J. Klafter, Phys. Rev. Lett. 58, 1100 (1987). https://doi.org/PRLTAO
    T. Solomon, E. Weeks, H. Swinney, Phys. Rev. Lett. 71, 3975 (1993). https://doi.org/PRLTAO
    S. Benkadda, S. Kassibrakis, R. White, G. M. Zaslavsky, Phys. Rev. E 55, 4909 (1997).https://doi.org/PLEEE8

  13. 13. G. M. Zaslavsky, M. Edelman, B. Niyazov, Chaos 7, 159 (1997). https://doi.org/CHAOEH
    V. Afraimovich, G. M. Zaslavsky, Phys. Rev. E 55, 5418 (1997).https://doi.org/PLEEE8

  14. 14. J. Machta, J. Stat. Phys. 32, 555 (1983).https://doi.org/JSTPBS

  15. 15. G. M. Zaslavsky, Chaos 5, 653 (1995). https://doi.org/CHAOEH
    G. M. Zaslavsky, M. Edelman, Phys. Rev. E 56, 5310 (1997).https://doi.org/PLEEE8

  16. 16. E. W. Montroll, M. F. Shlesinger, in Studies in Statistical Mechanics, J. Lebowitz, E. Montroll, eds., North Holland, Amsterdam (1984), vol. 11, p. 1.
    M. F. Shlesinger, Ann. Rev. Phys. Chem. 39, 269 (1988).https://doi.org/ARPLAP

  17. 17. P. Lévy, Theorie de l’Addition des Variables Aletoires, Gauthier‐Villiars, Paris (1937).

  18. 18. B. Sundaram, G. M. Zaslavsky, Phys. Rev. E 59, 7231 (1999).https://doi.org/PLEEE8

More about the Authors

George M. Zaslavsky. New York, University.

Related content
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
/
Article
Bottom-up self-assembly is a powerful approach to engineering at small scales. Special strategies are needed to formulate components that assemble into predetermined shapes with precise sizes.
/
Article
The polymath scientist leaves behind a monumental legacy in both the scientific and political realms.
This Content Appeared In
pt-cover_1999_08.jpeg

Volume 52, Number 8

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.