Chaotic Dynamics and the Origin of Statistical Laws
DOI: 10.1063/1.882777
The problem of the foundation of statistical physics emerged with the derivation by Ludwig Boltzmann of a kinetic equation for a gas of molecules that required monotonic growth of entropy. Boltzmann’s theory leads to modern thermodynamics, and, for example, to the impossibility of gas spontaneously gathering in one part of a container in the absence of external forces. This result, known as the H‐theorem, met with strong contemporary opposition, especially from mathematician Ernst Zermelo.
References
1. L. Boltzmann, Wien Ber. 66, 275 (1872).
2. E. Zermelo, Wied. Ann. 57, 485 (1896).
3. P. Ehrenfest and T. Ehrenfest, The Conceptual Foundations of the Statistical Approach in Mechanics, Cornell U. P., Ithaca, N.Y. (1959).
4. M. Kac, Probability and Related Topics in Physical Sciences, Interscience, New York (1957).
5. E. Fermi, J. Pasta. S. Ulam, Los Alamos Scientific Report LA‐1940 (1955),
reprinted in Collected Works of Enrico Fermi, vol. 2, p. 978, U. of Chicago P., Chicago (1965).
N. Zabusky, J. Comput. Physics 43, 195 (1981).https://doi.org/JCTPAH6. B. V. Chirikov, Physics Reports 52, 263 (1981);
N. S. Krylov, Works on the Foundations of Statistical Physics, Princeton U. P., Princeton, N.J. (1979).7. G. M. Zaslavsky, Chaos in Dynamic Systems, Harwood, New York (1984).
8. H. S. Leff and A. F. Rex, eds., Maxwell’s Demon, Princeton U. P., Princeton, N.J. (1990).
9. M. F. Shlesinger, G. M. Zaslavsky, J. Klafter, Nature 363, 31 (1993).https://doi.org/NATUAS
10. J. D. Meiss, Rev. Mod. Phys. 64, 795 (1992).https://doi.org/RMPHAT
11. L. Kuznetsov, G. M. Zaslavsky, Phys. Rev. E 58, 7330 (1998). https://doi.org/PLEEE8
A. Babiano, G. Boffetta, A. Provenzale, A. Vulpiani, Phys. Fluids 6, 2465 (1994).https://doi.org/PHFLE612. G. M. Zaslavsky, D. Stevens, H. Weitzner, Phys. Rev. E 48, 1683 (1993). https://doi.org/PLEEE8
M. F. Shlesinger, B. J. West, J. Klafter, Phys. Rev. Lett. 58, 1100 (1987). https://doi.org/PRLTAO
T. Solomon, E. Weeks, H. Swinney, Phys. Rev. Lett. 71, 3975 (1993). https://doi.org/PRLTAO
S. Benkadda, S. Kassibrakis, R. White, G. M. Zaslavsky, Phys. Rev. E 55, 4909 (1997).https://doi.org/PLEEE813. G. M. Zaslavsky, M. Edelman, B. Niyazov, Chaos 7, 159 (1997). https://doi.org/CHAOEH
V. Afraimovich, G. M. Zaslavsky, Phys. Rev. E 55, 5418 (1997).https://doi.org/PLEEE814. J. Machta, J. Stat. Phys. 32, 555 (1983).https://doi.org/JSTPBS
15. G. M. Zaslavsky, Chaos 5, 653 (1995). https://doi.org/CHAOEH
G. M. Zaslavsky, M. Edelman, Phys. Rev. E 56, 5310 (1997).https://doi.org/PLEEE816. E. W. Montroll, M. F. Shlesinger, in Studies in Statistical Mechanics, J. Lebowitz, E. Montroll, eds., North Holland, Amsterdam (1984), vol. 11, p. 1.
M. F. Shlesinger, Ann. Rev. Phys. Chem. 39, 269 (1988).https://doi.org/ARPLAP17. P. Lévy, Theorie de l’Addition des Variables Aletoires, Gauthier‐Villiars, Paris (1937).
18. B. Sundaram, G. M. Zaslavsky, Phys. Rev. E 59, 7231 (1999).https://doi.org/PLEEE8
More about the Authors
George M. Zaslavsky. New York, University.