Chaos: How Regular Can It Be?
DOI: 10.1063/1.881159
Forty years ago Albert Einstein wrote to Max Born, “God does not play dice.” Their correspondence dealt with the probabilistic interpretation of quantum theory, which Einstein opposed. He searched for a more direct analogy with classical mechanics that would consider deterministic processes free from probabilistic uncertainty.
References
1. N. N. Filonenko, R. Z. Sagdeev, G. M. Zaslavsky, Nucl. Fusion 7, 253 (1967).https://doi.org/NUFUAU
2. G. M. Zaslavsky, N. N. Filonenko, Zh. Eksp. Teor. Fiz. 54, 1590 (1968).https://doi.org/ZETFA7
3. G. M. Zaslavsky, M. Ya. Natenzon, B. A. Petrovichev, R. Z. Sagdeev, A. A. Chernikov, Zh. Eksp. Teor. Fiz. 93, 881 (1987).https://doi.org/ZETFA7
4. G. M. Zaslavsky, M. Yu. Zakharov, R. Z. Sagdeev, D. A. Usikov, A. A. Chernikov, Zh. Eksp. Teor. Fiz. 91, 500 (1986)
[G. M. Zaslavsky, M. Yu. Zakharov, R. Z. Sagdeev, D. A. Usikov, A. A. Chernikov, Sov. Phys. JETP 64, 294 (1986)].5. J. M. Greene, R. S. MacKay, F. Vivaldi, M. G. Feigenbaum, Physica D 3, 468 (1981).https://doi.org/PDNPDT
6. J. M. Greene, J. Math. Phys. 20, 1183 (1979).https://doi.org/JMAPAQ
7. B. V. Chirikov, Phys. Rep. 52, 263 (1979).https://doi.org/PRPLCM
8. Y. Pomeau, P. Manneville, Commun. Math. Phys. 79, 149 (1980).https://doi.org/CMPHAY
9. A. Fukuyama, H. Momota, R. Itatani, T. Takizuka, Phys. Rev. Lett. 38, 701 (1977).https://doi.org/PRLTAO
10. C. F. F. Karney, A. Bers, Phys. Rev. Lett. 39, 550 (1977). https://doi.org/PRLTAO
C. F. F. Karney, Phys. Fluids 21, 1584 (1978); https://doi.org/PFLDAS
C. F. F. Karney, 22, 2188 (1979).11. M. A. Malkov, G. M. Zaslavsky, Phys. Lett. A 106, 257 (1984).
G. M. Zaslavsky, M. A. Malkov, R. Z. Sagdeev, V. D. Shapiro, Fiz. Plasmy 12, 788 (1986).12. J. P. Bouchaud, A. Georges, D. Hansel, P. Le Doussal, J. M. Maillard, J. Phys. A: Math. Gen. Phys. 19, L1145 (1986).
13. A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 98, 527 (1954). https://doi.org/DANKAS
V. I. Arnol’d, Uspekhi Mat. Nauk 18, 13 (1963). https://doi.org/UMANA5
J. Moser, Nachr. Acad. Wiss. Göttingen II Math.‐Phys. Kl. 1, 11 (1962).14. V. I. Arnol’d, Dokl. Akad. Nauk SSSR 156, 9 (1964).https://doi.org/DANKAS
15. N. N. Nechoroshev, Usp. Mat. Nauk 32, 5 (1977).https://doi.org/UMANA5
16. A. A. Chernikov, R. Z. Sagdeev, D. A. Usikov, M. Yu. Zakharov, G. M. Zaslavsky, Nature 326, 559 (1987).https://doi.org/NATUAS
17. A. A. Chernikov, M. Ya. Natenzon, B. A. Petrovichev, R. Z. Sagdeev, G. M. Zaslavsky, Phys. Lett. A 122, 39 (1987).https://doi.org/PYLAAG
18. G. M. Zaslavsky, M. Yu. Zakharov, R. Z. Sagdeev, D. A. Usikov, A. A. Chernikov, JETP Lett. 44, 451 (1986). https://doi.org/JTPLA2
G. M. Zaslavsky, R. Z. Sagdeev, D. A. Usikov, A. A. Chernikov, Usp. Mat. Nauk 42, 226 (1987).https://doi.org/UMANA519. B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, New York (1983).
20. D. Schechtman, I. Blech, D. Gratias, J. W. Cahn, Phys. Rev. Lett. 53, 1951 (1984).https://doi.org/PRLTAO
21. G. M. Zaslavsky, R. Z. Sagdeev, A. A. Chernikov, Zh. Eksp. Teor. Fiz. 94, 102 (1988).https://doi.org/ZETFA7
22. A. J. Lichtenberg, M. A. Liberman, Regular and Stochastic Motion, Springer‐Verlag, New York (1983).
23. G. M. Zaslavsky, Chaos in Dynamic Systems, Harwood Academic, New York (1985).
24. R. Z. Sagdeev, D. A. Usikov, G. M. Zaslavsky, Nonlinear Physics: From the Pendulum to Turbulence and Chaos, Harwood Academic, New York (1988).
25. M. V. Berry, Ann. Phys. (Paris) 131, 163 (1981).https://doi.org/ANPHAJ
More about the Authors
Alexander A. Chernikov. Space Research Institute (IKI), Academy of Sciences of the USSR, Moscow.
Roald Z. Sagdeev. IKI.
George M. Zaslavsky. IKI.