Carbon Nanotubes as Molecular Quantum Wires
DOI: 10.1063/1.882658
Carbon nanotubes are cylindrical molecules with a diameter of as little as 1 nanometer and a length up to many micrometers. They consist of only carbon atoms, and can essentially be thought of as a single layer of graphite that has been wrapped into a cylinder, (See figure 1 and the article by Thomas Ebbesen in P
This article is only available in PDF format
References
1. R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London (1998).
2. S. Iijima, Nature 354, 56 (1991).https://doi.org/NATUAS
3. D. S. Bethune et al., Nature 363, 605 (1993). https://doi.org/NATUAS
S. Iijima, T. Ichibashi, Nature 363, 603 (1993).https://doi.org/NATUAS4. A. Thess et al., Science 273, 483 (1996).https://doi.org/SCIEAS
5. J. W. Mintmire, B. I. Dunlap, C. T. White, Phys. Rev. Lett. 68, 631 (1992).https://doi.org/PRLTAO
N. Hamada, S.‐I. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 579 (1992). https://doi.org/PRLTAO
R. Saito et al., Appl. Phys. Lett. 60, 2204 (1992).https://doi.org/APPLAB6. J. W. G. Wildöer et al., Nature 391, 59 (1998). https://doi.org/NATUAS
T. W. Odom et al., Nature 391, 62 (1998).https://doi.org/NATUAS7. R. E. Peierls, Ann. Phys. (Leipzig) 4, 121 (1930); https://doi.org/ANPYA2
Quantum Theory of Solids, Oxford U. P., New York (1955).8. L. Langer et al., J. Mater. Res. 9, 927 (1994); https://doi.org/JMREEE
L. Langer, Phys. Rev. Lett. 76, 479 (1996). https://doi.org/PRLTAO
H. Dai, E. W. Wong, C. M. Lieber, Science 272, 523 (1996). https://doi.org/SCIEAS
T. W. Ebbesen et al., Nature 382, 54 (1996).https://doi.org/NATUAS9. S. J. Tans et al., Nature 386, 474 (1997). https://doi.org/NATUAS
M. Bockrath et al., Science 275, 1922 (1997).https://doi.org/SCIEAS10. H. Grabert, M. H. Devoret, eds., Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures, Plenum, New York (1992).
11. S.‐I. Tomonaga, Prog. Theor. Phys. (Kyoto) 5, 544 (1950).
J. M. Luttinger, J. Math. Phys. 15, 609 (1963).https://doi.org/JMAPAQ12. C. L. Kane, L. Balents, M. P. A. Fischer, Phys. Rev. Lett. 79, 5086 (1997). https://doi.org/PRLTAO
R. Egger, A. O. Gogolin, Phys. Rev. Lett. 79, 5082 (1997).https://doi.org/PRLTAO13. S. Frank et al., Science 280, 1744 (1998).https://doi.org/SCIEAS
14. Y. Saito, S. Uemura, K. Hamaguchi, Jpn. J. Appl. Phys. 37, L346 (1998).https://doi.org/JJPYA5
15. H. Dai et al., Nature 384, 147 (1996).https://doi.org/NATUAS
16. S. J. Tans, A. R. M. Verschueren, C. Dekker, Nature 393, 49 (1998).https://doi.org/NATUAS
17. L. Chico et al., Phys. Rev. Lett. 76, 971 (1996). https://doi.org/PRLTAO
R. Saito, G. Dresselhaus, M. S. Dresselhaus, Phys. Rev. B 53, 2044 (1996). https://doi.org/PRBMDO
P. Lambin et al., Chem. Phys. Lett. 245, 85 (1995).https://doi.org/CHPLBC
More about the Authors
Cees Dekker. University of Technology, Delft, the Netherlands.