Discover
/
Article

Block Copolymers—Designer Soft Materials

FEB 01, 1999
Advances in synthetic chemistry and statistical theory provide unparalleled control over molecular scale morphology in this class of macromolecules.
Frank S. Bates
Glenn H. Fredrickson

Block copolymers are all around us, found in such products as upholstery foam, adhesive tape and asphalt additives. This class of macromolecules is produced by joining two or more chemically distinct polymer blocks, each a linear series of identical monomers, that may be thermodynamically incompatible (like oil and vinegar). Segregation of these blocks on the molecular scale (5–100 nm) can produce astonishingly complex nanostructures, such as the “knitting pattern” shown on the cover of this issue of PHYSICS TODAY. This striking pattern, discovered by Reimund Stadler and his coworkers, reflects a delicate free‐energy minimization that is common to all block copolymer materials.

This article is only available in PDF format

References

  1. 1. U. Breiner, U. Krappe, E. L. Thomas, R. Stadler, Macromolecules 31, 135 (1998).https://doi.org/MAMOBX

  2. 2. I. W. Hamley, Block Copolymers, Oxford U. P., Oxford, England (1999).

  3. 3. T. Hashimoto, M. Shibayama, H. Kawai, Macromolecules 13, 1237 (1980).https://doi.org/MAMOBX

  4. 4. L. Leibler, Macromolecules 13, 1602 (1980).https://doi.org/MAMOBX

  5. 5. E. Helfand, Z. R. Wasserman, Macromolecules 9, 879 (1976); https://doi.org/MAMOBX
    E. Helfand, Z. R. Wasserman, 11, 960 (1978); https://doi.org/MAMOBX , Macromolecules
    E. Helfand, Z. R. Wasserman, 13, 994 (1980).https://doi.org/MAMOBX , Macromolecules

  6. 6. J. Noolandi, K. M. Hang, Ferroelectrics 30, 117 (1980). https://doi.org/FEROA8
    K. M. Hong, J. Noolandi, Macromolecules 14, 727 (1981). https://doi.org/MAMOBX
    M. D. Whitmore, J. Noolandi, J. Chem. Phys. 93, 2946 (1990).https://doi.org/JCPSA6

  7. 7. A. N. Semenov, Sov. Phys. JETP 61, 733 (1985).https://doi.org/SPHJAR

  8. 8. M. W. Matsen, M. Schick, Phys. Rev. Lett. 72, 2660 (1994); https://doi.org/PRLTAO
    M. W. Matsen, M. Schick, Macromolecules 27, 6761 (1994); https://doi.org/MAMOBX
    M. W. Matsen, M. Schick, 27, 7157 (1994). https://doi.org/MAMOBX , Macromolecules
    M. W. Matsen, F. S. Bates, Macromolecules, 29, 1091 (1996).https://doi.org/MAMOBX

  9. 9. A. K. Khandpur, S. Förster, F. S. Bates, I. W. Hamley, A. J. Ryan, W. Bras, K. Almdal, K. Mortensen, Macromolecules 28, 8796 (1995).https://doi.org/MAMOBX

  10. 10. S. Qi, Z.‐G. Wang, Phys. Rev. E 55, 1682 (1997); https://doi.org/PLEEE8
    D. A. Hajduk, H. Takenouchi, M. A. Hillmyer, F. S. Bates, M. E. Vigild, K. Almdal, Macromolecules 30, 3788 (1997).https://doi.org/MAMOBX

  11. 11. G. H. Fredrickson, E. Helfand, J. Chem. Phys. 87, 697 (1987). https://doi.org/JCPSA6
    F. S. Bates, J. H. Rosedale, G. H. Fredrickson, C. Glinka, Phys. Rev. Lett. 61, 2229 (1988).https://doi.org/PRLTAO

  12. 12. S. T. Milner, Macromolecules 27, 2333 (1994).https://doi.org/MAMOBX

  13. 13. R. Stadler, C. Aushra, J. Beckmann, U. Krappe, I. Voigt‐Martin, L. Leibler, Macromolecules 28, 3080 (1995). https://doi.org/MAMOBX
    W. Zheng, Z.‐G. Wang, Macromolecules 28, 7215 (1995).https://doi.org/MAMOBX

  14. 14. Y. Matsushita, J. Suzuki, M. Seki, Physica B 248, 238 (1998). https://doi.org/PHYBE3
    Y. Mogi, M. Nomura, H. Kotsuje, K. Ohnishi, Y. Matsushita, I. Noda, Macromolecules 27, 6755 (1994).https://doi.org/MAMOBX

  15. 15. M. W. Matsen, J. Chem. Phys. 108, 785 (1998).https://doi.org/JCPSA6

  16. 16. F. S. Bates, W. W. Maurer, P. M. Lipic, M. A. Hillmyer, K. Almdal, K. Mortensen, G. H. Fredrickson, T. P. Lodge, Phys. Rev. Lett. 79, 849 (1997). https://doi.org/PRLTAO
    G. H. Fredrickson, F. S. Bates, Eur. Phys. J. B. 1, 71 (1998).https://doi.org/EPJBFY

  17. 17. A. Schoen, NASA TechNote TN D‐5541 (1970).

  18. 18. D. A. Hajduk, P. E. Harper, S. M. Gruner, C. Honeker, G. Kim, E. L. Thomas, L. J. Fetters, Macromolecules 27, 4063 (1994). https://doi.org/MAMOBX
    M. F. Schulz, F. S. Bates, K. Almdal, K. Mortensen, Phys. Rev. Lett. 73, 86 (1994).https://doi.org/PRLTAO

More about the Authors

Frank S. Bates. University of Minnesota, Minneapolis.

Glenn H. Fredrickson. University of California, Santa Barbara.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1999_02.jpeg

Volume 52, Number 2

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.