Block copolymers are all around us, found in such products as upholstery foam, adhesive tape and asphalt additives. This class of macromolecules is produced by joining two or more chemically distinct polymer blocks, each a linear series of identical monomers, that may be thermodynamically incompatible (like oil and vinegar). Segregation of these blocks on the molecular scale (5–100 nm) can produce astonishingly complex nanostructures, such as the “knitting pattern” shown on the cover of this issue of PHYSICS TODAY. This striking pattern, discovered by Reimund Stadler and his coworkers, reflects a delicate free‐energy minimization that is common to all block copolymer materials.
This article is only available in PDF format
References
1. U. Breiner, U. Krappe, E. L. Thomas, R. Stadler, Macromolecules 31, 135 (1998).https://doi.org/MAMOBX
2. I. W. Hamley, Block Copolymers, Oxford U. P., Oxford, England (1999).
3. T. Hashimoto, M. Shibayama, H. Kawai, Macromolecules 13, 1237 (1980).https://doi.org/MAMOBX
9. A. K. Khandpur, S. Förster, F. S. Bates, I. W. Hamley, A. J. Ryan, W. Bras, K. Almdal, K. Mortensen, Macromolecules 28, 8796 (1995).https://doi.org/MAMOBX
10. S. Qi, Z.‐G. Wang, Phys. Rev. E 55, 1682 (1997); https://doi.org/PLEEE8 D. A. Hajduk, H. Takenouchi, M. A. Hillmyer, F. S. Bates, M. E. Vigild, K. Almdal, Macromolecules 30, 3788 (1997).https://doi.org/MAMOBX
11. G. H. Fredrickson, E. Helfand, J. Chem. Phys. 87, 697 (1987). https://doi.org/JCPSA6 F. S. Bates, J. H. Rosedale, G. H. Fredrickson, C. Glinka, Phys. Rev. Lett. 61, 2229 (1988).https://doi.org/PRLTAO
13. R. Stadler, C. Aushra, J. Beckmann, U. Krappe, I. Voigt‐Martin, L. Leibler, Macromolecules 28, 3080 (1995). https://doi.org/MAMOBX W. Zheng, Z.‐G. Wang, Macromolecules 28, 7215 (1995).https://doi.org/MAMOBX
14. Y. Matsushita, J. Suzuki, M. Seki, Physica B 248, 238 (1998). https://doi.org/PHYBE3 Y. Mogi, M. Nomura, H. Kotsuje, K. Ohnishi, Y. Matsushita, I. Noda, Macromolecules 27, 6755 (1994).https://doi.org/MAMOBX
16. F. S. Bates, W. W. Maurer, P. M. Lipic, M. A. Hillmyer, K. Almdal, K. Mortensen, G. H. Fredrickson, T. P. Lodge, Phys. Rev. Lett. 79, 849 (1997). https://doi.org/PRLTAO G. H. Fredrickson, F. S. Bates, Eur. Phys. J. B. 1, 71 (1998).https://doi.org/EPJBFY
17. A. Schoen, NASA TechNote TN D‐5541 (1970).
18. D. A. Hajduk, P. E. Harper, S. M. Gruner, C. Honeker, G. Kim, E. L. Thomas, L. J. Fetters, Macromolecules 27, 4063 (1994). https://doi.org/MAMOBX M. F. Schulz, F. S. Bates, K. Almdal, K. Mortensen, Phys. Rev. Lett. 73, 86 (1994).https://doi.org/PRLTAO
More about the authors
Frank S. Bates,
University of Minnesota, Minneapolis.
Glenn H. Fredrickson,
University of California, Santa Barbara.
With strong magnetic fields and intense lasers or pulsed electric currents, physicists can reconstruct the conditions inside astrophysical objects and create nuclear-fusion reactors.
A crude device for quantification shows how diverse aspects of distantly related organisms reflect the interplay of the same underlying physical factors.