Block copolymers are all around us, found in such products as upholstery foam, adhesive tape and asphalt additives. This class of macromolecules is produced by joining two or more chemically distinct polymer blocks, each a linear series of identical monomers, that may be thermodynamically incompatible (like oil and vinegar). Segregation of these blocks on the molecular scale (5–100 nm) can produce astonishingly complex nanostructures, such as the “knitting pattern” shown on the cover of this issue of PHYSICS TODAY. This striking pattern, discovered by Reimund Stadler and his coworkers, reflects a delicate free‐energy minimization that is common to all block copolymer materials.
This article is only available in PDF format
References
1. U. Breiner, U. Krappe, E. L. Thomas, R. Stadler, Macromolecules 31, 135 (1998).https://doi.org/MAMOBX
2. I. W. Hamley, Block Copolymers, Oxford U. P., Oxford, England (1999).
3. T. Hashimoto, M. Shibayama, H. Kawai, Macromolecules 13, 1237 (1980).https://doi.org/MAMOBX
9. A. K. Khandpur, S. Förster, F. S. Bates, I. W. Hamley, A. J. Ryan, W. Bras, K. Almdal, K. Mortensen, Macromolecules 28, 8796 (1995).https://doi.org/MAMOBX
10. S. Qi, Z.‐G. Wang, Phys. Rev. E 55, 1682 (1997); https://doi.org/PLEEE8 D. A. Hajduk, H. Takenouchi, M. A. Hillmyer, F. S. Bates, M. E. Vigild, K. Almdal, Macromolecules 30, 3788 (1997).https://doi.org/MAMOBX
11. G. H. Fredrickson, E. Helfand, J. Chem. Phys. 87, 697 (1987). https://doi.org/JCPSA6 F. S. Bates, J. H. Rosedale, G. H. Fredrickson, C. Glinka, Phys. Rev. Lett. 61, 2229 (1988).https://doi.org/PRLTAO
13. R. Stadler, C. Aushra, J. Beckmann, U. Krappe, I. Voigt‐Martin, L. Leibler, Macromolecules 28, 3080 (1995). https://doi.org/MAMOBX W. Zheng, Z.‐G. Wang, Macromolecules 28, 7215 (1995).https://doi.org/MAMOBX
14. Y. Matsushita, J. Suzuki, M. Seki, Physica B 248, 238 (1998). https://doi.org/PHYBE3 Y. Mogi, M. Nomura, H. Kotsuje, K. Ohnishi, Y. Matsushita, I. Noda, Macromolecules 27, 6755 (1994).https://doi.org/MAMOBX
16. F. S. Bates, W. W. Maurer, P. M. Lipic, M. A. Hillmyer, K. Almdal, K. Mortensen, G. H. Fredrickson, T. P. Lodge, Phys. Rev. Lett. 79, 849 (1997). https://doi.org/PRLTAO G. H. Fredrickson, F. S. Bates, Eur. Phys. J. B. 1, 71 (1998).https://doi.org/EPJBFY
17. A. Schoen, NASA TechNote TN D‐5541 (1970).
18. D. A. Hajduk, P. E. Harper, S. M. Gruner, C. Honeker, G. Kim, E. L. Thomas, L. J. Fetters, Macromolecules 27, 4063 (1994). https://doi.org/MAMOBX M. F. Schulz, F. S. Bates, K. Almdal, K. Mortensen, Phys. Rev. Lett. 73, 86 (1994).https://doi.org/PRLTAO
More about the Authors
Frank S. Bates.
University of Minnesota, Minneapolis.
Glenn H. Fredrickson.
University of California, Santa Barbara.
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
November 10, 2025 10:22 AM
This Content Appeared In
Volume 52, Number 2
Get PT in your inbox
PT The Week in Physics
A collection of PT's content from the previous week delivered every Monday.
One email per week
PT New Issue Alert
Be notified about the new issue with links to highlights and the full TOC.
One email per month
PT Webinars & White Papers
The latest webinars, white papers and other informational resources.