Discover
/
Article

Block Copolymers—Designer Soft Materials

FEB 01, 1999
Advances in synthetic chemistry and statistical theory provide unparalleled control over molecular scale morphology in this class of macromolecules.
Frank S. Bates
Glenn H. Fredrickson

Block copolymers are all around us, found in such products as upholstery foam, adhesive tape and asphalt additives. This class of macromolecules is produced by joining two or more chemically distinct polymer blocks, each a linear series of identical monomers, that may be thermodynamically incompatible (like oil and vinegar). Segregation of these blocks on the molecular scale (5–100 nm) can produce astonishingly complex nanostructures, such as the “knitting pattern” shown on the cover of this issue of PHYSICS TODAY. This striking pattern, discovered by Reimund Stadler and his coworkers, reflects a delicate free‐energy minimization that is common to all block copolymer materials.

This article is only available in PDF format

References

  1. 1. U. Breiner, U. Krappe, E. L. Thomas, R. Stadler, Macromolecules 31, 135 (1998).https://doi.org/MAMOBX

  2. 2. I. W. Hamley, Block Copolymers, Oxford U. P., Oxford, England (1999).

  3. 3. T. Hashimoto, M. Shibayama, H. Kawai, Macromolecules 13, 1237 (1980).https://doi.org/MAMOBX

  4. 4. L. Leibler, Macromolecules 13, 1602 (1980).https://doi.org/MAMOBX

  5. 5. E. Helfand, Z. R. Wasserman, Macromolecules 9, 879 (1976); https://doi.org/MAMOBX
    E. Helfand, Z. R. Wasserman, 11, 960 (1978); https://doi.org/MAMOBX , Macromolecules
    E. Helfand, Z. R. Wasserman, 13, 994 (1980).https://doi.org/MAMOBX , Macromolecules

  6. 6. J. Noolandi, K. M. Hang, Ferroelectrics 30, 117 (1980). https://doi.org/FEROA8
    K. M. Hong, J. Noolandi, Macromolecules 14, 727 (1981). https://doi.org/MAMOBX
    M. D. Whitmore, J. Noolandi, J. Chem. Phys. 93, 2946 (1990).https://doi.org/JCPSA6

  7. 7. A. N. Semenov, Sov. Phys. JETP 61, 733 (1985).https://doi.org/SPHJAR

  8. 8. M. W. Matsen, M. Schick, Phys. Rev. Lett. 72, 2660 (1994); https://doi.org/PRLTAO
    M. W. Matsen, M. Schick, Macromolecules 27, 6761 (1994); https://doi.org/MAMOBX
    M. W. Matsen, M. Schick, 27, 7157 (1994). https://doi.org/MAMOBX , Macromolecules
    M. W. Matsen, F. S. Bates, Macromolecules, 29, 1091 (1996).https://doi.org/MAMOBX

  9. 9. A. K. Khandpur, S. Förster, F. S. Bates, I. W. Hamley, A. J. Ryan, W. Bras, K. Almdal, K. Mortensen, Macromolecules 28, 8796 (1995).https://doi.org/MAMOBX

  10. 10. S. Qi, Z.‐G. Wang, Phys. Rev. E 55, 1682 (1997); https://doi.org/PLEEE8
    D. A. Hajduk, H. Takenouchi, M. A. Hillmyer, F. S. Bates, M. E. Vigild, K. Almdal, Macromolecules 30, 3788 (1997).https://doi.org/MAMOBX

  11. 11. G. H. Fredrickson, E. Helfand, J. Chem. Phys. 87, 697 (1987). https://doi.org/JCPSA6
    F. S. Bates, J. H. Rosedale, G. H. Fredrickson, C. Glinka, Phys. Rev. Lett. 61, 2229 (1988).https://doi.org/PRLTAO

  12. 12. S. T. Milner, Macromolecules 27, 2333 (1994).https://doi.org/MAMOBX

  13. 13. R. Stadler, C. Aushra, J. Beckmann, U. Krappe, I. Voigt‐Martin, L. Leibler, Macromolecules 28, 3080 (1995). https://doi.org/MAMOBX
    W. Zheng, Z.‐G. Wang, Macromolecules 28, 7215 (1995).https://doi.org/MAMOBX

  14. 14. Y. Matsushita, J. Suzuki, M. Seki, Physica B 248, 238 (1998). https://doi.org/PHYBE3
    Y. Mogi, M. Nomura, H. Kotsuje, K. Ohnishi, Y. Matsushita, I. Noda, Macromolecules 27, 6755 (1994).https://doi.org/MAMOBX

  15. 15. M. W. Matsen, J. Chem. Phys. 108, 785 (1998).https://doi.org/JCPSA6

  16. 16. F. S. Bates, W. W. Maurer, P. M. Lipic, M. A. Hillmyer, K. Almdal, K. Mortensen, G. H. Fredrickson, T. P. Lodge, Phys. Rev. Lett. 79, 849 (1997). https://doi.org/PRLTAO
    G. H. Fredrickson, F. S. Bates, Eur. Phys. J. B. 1, 71 (1998).https://doi.org/EPJBFY

  17. 17. A. Schoen, NASA TechNote TN D‐5541 (1970).

  18. 18. D. A. Hajduk, P. E. Harper, S. M. Gruner, C. Honeker, G. Kim, E. L. Thomas, L. J. Fetters, Macromolecules 27, 4063 (1994). https://doi.org/MAMOBX
    M. F. Schulz, F. S. Bates, K. Almdal, K. Mortensen, Phys. Rev. Lett. 73, 86 (1994).https://doi.org/PRLTAO

More about the authors

Frank S. Bates, University of Minnesota, Minneapolis.

Glenn H. Fredrickson, University of California, Santa Barbara.

Related content
/
Article
The ability to communicate a key message clearly and concisely to a nonspecialized audience is a critical skill to develop at all educational levels.
/
Article
With strong magnetic fields and intense lasers or pulsed electric currents, physicists can reconstruct the conditions inside astrophysical objects and create nuclear-fusion reactors.
/
Article
A crude device for quantification shows how diverse aspects of distantly related organisms reflect the interplay of the same underlying physical factors.
/
Article
Events held around the world have recognized the past, present, and future of quantum science and technology.
This Content Appeared In
pt-cover_1999_02.jpeg

Volume 52, Number 2

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.