Discover
/
Article

Biological and Synthetic Hierarchical Composites

OCT 01, 1992
Creators of high-performance synthetic composites hope to emulate nature by designing materials that are optimized for their ultimate functions on every scale from the molecular to the macroscopic.
Eric Baer
Anne Hiltner
Roger J. Morgan

Many advanced composites can best be described hierarchically. In particular, the biological composites that occur in organisms are generally seen to be organized on discrete scale levels ranging from the molecular to the macroscopic. At each level the components are held together by specific interactions and organized in a way that is optimized for the ultimate function and performance of the overall system. Biological composites typically consist of fibers made from long macromolecules, organized into different structures. One can learn much from biological composites by considering the relationship between their structures and their properties. Whether natural or synthetic, for a composite system to function efficiently its components must be assembled into a specific architecture that gives the required spectrum of properties.

This article is only available in PDF format

References

  1. 1. S. W. Tsai, H. T. Hahn, Introduction to Composite Materials, Technomic Publishing, Lancaster, Pa. (1980).

  2. 2. D. Hull, An Introduction to Composite Materials, Cambridge U.P., New York (1981).

  3. 3. A. Kelly, N. H. Macmillan, Strong Solids, 3rd ed., Clarendon P., Oxford (1986).

  4. 4. K. H. G. Ashbee, Fundamental Principles of Fiber‐Reinforced Composites, Technomic Publishing, Lancaster, Pa. (1989).

  5. 5. E. Baer, J. J. Cassidy, A. Hiltner, in Viscoelasticity of Biomaterials, Am. Chem. Soc. Symp. Ser. 489, W. Glasser, H. Hatakayama, eds., Am. Chem. Soc., Washington, D.C. (1992), p. 2.

  6. 6. E. Baer, A. Hiltner, H. D. Keith, Science 235, 1015 (1987).https://doi.org/SCIEAS

  7. 7. L. Addadi, S. Weiner, Proc. Natl. Acad. Sci. USA 82, 4110 (1985); https://doi.org/PNASA6
    L. Addadi, S. Weiner, Proc. Natl. Acad. Sci. USA 84, 2732 (1987).https://doi.org/PNASA6

  8. 8. S. A. Wainwright, W. D. Boggs, J. D. Currey, J. M. Gosline, Mechanical Design in Organisms, Princeton U.P., Princeton, N.J. (1982), p. 81.

  9. 9. J. Kastelic, E. Baer, in Mechanical Properties of Biological Materials, Soc. Exp. Biol., 34th Symp., Leeds U., Leeds, England (1980), p. 397.

  10. 10. J. D. Currey, The Mechanical Adaptations of Bones, Princeton U.P., Princeton, N.J. (1984).

  11. 11. J. J. Cassidy, A. Hiltner, E. Baer, J. Connective Tissue Res. 23, 75 (1989).

  12. 12. J. Vincent, Structural Biocomposites, rev. ed., Princeton U.P., Princeton, N.J. (1990).

  13. 13. M. Sarikaya, I. A. Aksay, in Cellular Synthesis and Assembly of Biopolymers, S. Case, ed., Springer‐Verlag, New York (1992), p. 1.
    M. Sarikaya et al., in Materials Synthesis Utilizing Biological Processes, MRS Symp. Proc. 174, P. C. Rieke, P. D. Calvert, M. Alper, eds., Mater. Res. Soc., Pittsburgh (1990), p. 109.

  14. 14. W. Glasser, H. Hatakayama, eds., Viscoelasticity of Biomaterials, Am. Chem. Soc. Symp. Ser. 489, Am. Chem. Soc., Washington, DC. (1992).

  15. 15. J. W. Orberg, E. Baer, A. Hiltner, J. Connective Tissue Res. 11, 285 (1983).

  16. 16. L. A. McNicol, E. Strahlman, eds., Corneal Biophysics Workshop I on Corneal Biomechanics and Wound Healing, Natl. Eye Inst., Natl. Inst. Health, Bethesda, Md. (1989).

  17. 17. S. M. Lee, ed., International Encyclopedia of Composites, VCH Publishers, New York (1990).

  18. 18. H. T. Hahn, J. Astronaut. Sci. 32, 253 (1984).https://doi.org/JALSA6

  19. 19. P. M. Hergenrother, M. E. Rogalski, Am. Chem. Soc. Polymer Preprints 33 (1), 354 (1992).

  20. 20. Z. Sun, R. J. Morgan, D. N. Lewis, in Advanced Composite Materials: New Developments and Applications Conference Proceedings, Am. Soc. Metals Int., Materials Park, Ohio (1991), p. 555.

  21. 21. R. J. Morgan, in International Encyclopedia of Composites, vol. 1, S. M. Lee, ed., VCH Publishers, New York (1990), p. 15.

More about the Authors

Eric Baer. Case Western Reserve University, Cleveland, Ohio.

Anne Hiltner. Center for Applied Polymer Research, Case Western Reserve University.

Roger J. Morgan. Michigan Molecular Institute, Midland, Michigan.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1992_10.jpeg

Volume 45, Number 10

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.