Controlled‐electron spectroscopy permits study of atomic levels not accessible with resonance radiation. With electron‐beam excitation, radiation selection rules no longer apply. Polarization data can reveal hyperfine structure, and when the technique is combined with paramagnetic resonance, lifetimes can be obtained from the resonance linewidths.
PRECISE STUDIES of atomic lifetimes have intensified during the past few years, undoubtedly with the impetus of the increasing interest of astrophysicists and laser researchers. It had previously been all too common that extensive transition‐probability data were not available; one could only rely on calculations. The ensuing progress, however, has not been limited simply to expansion of the more “classical” types of experimentation, which in fact only give the product of the transition probability and the atom density. Experiments now measure the lifetime τ directly by some techniques that will be quite familiar to the nuclear physicist. They also measure its Fourier transform, the linewidth
This article is only available in PDF format
References
1. Optical Transition Probabilities (I. Meroz, ed.) (translated from Russian by Israel Program for Scientific Translations) S. Monson, Jerusalem (available from OTS, US Department of Commerce, Washington 25, D.C.) (1963).
2. A. C. G. Mitchell, M. W. Zemansky, Resonance Radiation and Excited Atoms, Cambridge U. Press, Cambridge (1934); S. A. Korff, G. Breit, Rev. Mod. Phys. 4, 471 (1932).https://doi.org/RMPHAT
5. H. W. B. Skinner, Proc. Roy. Soc. (London) A112, 642 (1926); https://doi.org/PRLAAZ H. W. B. Skinner, E. T. S. Appleyard, Proc. Roy. Soc. (London) A117, 224 (1927–28).https://doi.org/PRLAAZ
6. I. C. Percival, M. J. Seaton, Phil. Trans. Roy. Soc. (London) 251, 113 (1958).
9. D. W. O. Heddle, R. G. W. Keesing, p. 382 in 4th International Conference on the Physics of Electronic and Atomic Collisions, Science Bookcrafters. Hastings‐on‐Hudson, N.Y. (1965).
10. H. Hafner, H. Kleinpoppen, H. Krüger, p. 386, op cit ref. 9.
13. (a) J. Brossel, A. Kastler, Compt. Rend. 229, 1215 (1949). https://doi.org/COREAF (b) J. C. Pebay‐Peyroula, J. Brossel, A. Kastler, Compt. Rend. 244, 57 (1957); https://doi.org/COREAF J. C. Pebay‐Peyroula, J. Brossel, A. Kastler, 245, 840 (1957); https://doi.org/COREAF, Compt. Rend. J. C. Pebay‐Peyroula, J. Phys. Radium 20, 669, 721 (1959).https://doi.org/JPRAAJ
14. F. D. Colegrove, P. A. Franken, R. R. Lewis, R. A. Sands, Phys. Rev. Letters 3, 420 (1959).https://doi.org/PRLTAO
15. A. Faure, O. Nedelec, J. C. Pebay‐Peyroula, Compt. Rend. 256, 5088 (1963).https://doi.org/COREAF
18. O. Nedelec, thesis, University of Grenoble, May 1966.
19. C. Cohen‐Tannoudji, Ann. Phys. (Paris) 7, 423 (1962); https://doi.org/ANPHAJ Rendiconti S. I. F., XVII Corso, Academic Press, New York (1962) p. 240; C. Cohen‐Tannoudji, A. Kastler, Progress in Optics, vol. 5 (E. Wolf, ed.) North‐Holland, Amsterdam (1966).
23. O. V. Konstantinov, V. I. Perel, Soviet Phys.‐JETP 18, 195 (1964); https://doi.org/SPHJAR A. Corney, G. W. Series, Proc. Phys. Soc. (London) 83, 207 (1964).https://doi.org/PPSOAU
26. E. B. Aleksandrov, ibid 14, 233 (1963); A. Corney, G. W. Series, Proc. Phys. Soc. (London) 83, 213 (1964).https://doi.org/PPSOAU
27. O. Nedelec, M. N. Deschizeaux, J. C. Pebay‐Peyroula, Compt. Rend. 257, 3130 (1963); https://doi.org/COREAF E. B. Aleksandrov, Opt. Spectry. (USSR) 16, 209 (1964).https://doi.org/OPSUA3
28. E. B. Aleksandrov, O. V. Konstantinov, V. I. Perel, V. A. Khodovoi, Soviet Phys.‐JETP 18, 346 (1964); https://doi.org/SPHJAR C. J. Favre, E. Geneux, Phys. Letters 8, 190 (1964).https://doi.org/PHLTAM
29. T. Hadeishi, W. A. Nierenberg, Phys. Rev. Letters 14, 891 (1965).https://doi.org/PRLTAO
31. J. Z. Klose, Phys. Rev. 141, 181 (1966); https://doi.org/PHRVAO W. R. Bennett Jr, Appl. Opt. supplement 1, “Optical Masers,” p. 30 (1962); S. Heron, R. W. P. McWhirter, E. H. Rhoderick, Proc. Roy. Soc. (London) A234, 565 (1956).https://doi.org/PRLAAZ
32. R. G. Fowler, T. M. Holzberlein, C. H. Jacobson, Phys. Rev. 140, A1050 (1965).https://doi.org/PHRVAO
33. L. Brewer, C. G. James, R. G. Brewer, F. E. Stafford, R. H. Berg, G. M. Rosenblatt, Rev. Sci. Instr. 33, 1450 (1962); https://doi.org/RSINAK A. Müller, R. Lumry, H. Kokubun, Rev. Sci. Instr. 36, 1214 (1965); https://doi.org/RSINAK G. M. Lawrence, B. D. Savage, Phys. Rev. 141, 67 (1966).https://doi.org/PHRVAO
34. R. H. Hughes, H. R. Dawson, B. M. Doughty, J. Opt. Soc. Am. 56, 830 (1966).https://doi.org/JOSAAH
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
November 10, 2025 10:22 AM
This Content Appeared In
Volume 19, Number 10
Get PT in your inbox
PT The Week in Physics
A collection of PT's content from the previous week delivered every Monday.
One email per week
PT New Issue Alert
Be notified about the new issue with links to highlights and the full TOC.
One email per month
PT Webinars & White Papers
The latest webinars, white papers and other informational resources.