Controlled‐electron spectroscopy permits study of atomic levels not accessible with resonance radiation. With electron‐beam excitation, radiation selection rules no longer apply. Polarization data can reveal hyperfine structure, and when the technique is combined with paramagnetic resonance, lifetimes can be obtained from the resonance linewidths.
PRECISE STUDIES of atomic lifetimes have intensified during the past few years, undoubtedly with the impetus of the increasing interest of astrophysicists and laser researchers. It had previously been all too common that extensive transition‐probability data were not available; one could only rely on calculations. The ensuing progress, however, has not been limited simply to expansion of the more “classical” types of experimentation, which in fact only give the product of the transition probability and the atom density. Experiments now measure the lifetime τ directly by some techniques that will be quite familiar to the nuclear physicist. They also measure its Fourier transform, the linewidth
References
1. Optical Transition Probabilities (I. Meroz, ed.) (translated from Russian by Israel Program for Scientific Translations) S. Monson, Jerusalem (available from OTS, US Department of Commerce, Washington 25, D.C.) (1963).
2. A. C. G. Mitchell, M. W. Zemansky, Resonance Radiation and Excited Atoms, Cambridge U. Press, Cambridge (1934); S. A. Korff, G. Breit, Rev. Mod. Phys. 4, 471 (1932).https://doi.org/RMPHAT
5. H. W. B. Skinner, Proc. Roy. Soc. (London) A112, 642 (1926); https://doi.org/PRLAAZ H. W. B. Skinner, E. T. S. Appleyard, Proc. Roy. Soc. (London) A117, 224 (1927–28).https://doi.org/PRLAAZ
6. I. C. Percival, M. J. Seaton, Phil. Trans. Roy. Soc. (London) 251, 113 (1958).
9. D. W. O. Heddle, R. G. W. Keesing, p. 382 in 4th International Conference on the Physics of Electronic and Atomic Collisions, Science Bookcrafters. Hastings‐on‐Hudson, N.Y. (1965).
10. H. Hafner, H. Kleinpoppen, H. Krüger, p. 386, op cit ref. 9.
13. (a) J. Brossel, A. Kastler, Compt. Rend. 229, 1215 (1949). https://doi.org/COREAF (b) J. C. Pebay‐Peyroula, J. Brossel, A. Kastler, Compt. Rend. 244, 57 (1957); https://doi.org/COREAF J. C. Pebay‐Peyroula, J. Brossel, A. Kastler, 245, 840 (1957); https://doi.org/COREAF, Compt. Rend. J. C. Pebay‐Peyroula, J. Phys. Radium 20, 669, 721 (1959).https://doi.org/JPRAAJ
14. F. D. Colegrove, P. A. Franken, R. R. Lewis, R. A. Sands, Phys. Rev. Letters 3, 420 (1959).https://doi.org/PRLTAO
15. A. Faure, O. Nedelec, J. C. Pebay‐Peyroula, Compt. Rend. 256, 5088 (1963).https://doi.org/COREAF
18. O. Nedelec, thesis, University of Grenoble, May 1966.
19. C. Cohen‐Tannoudji, Ann. Phys. (Paris) 7, 423 (1962); https://doi.org/ANPHAJ Rendiconti S. I. F., XVII Corso, Academic Press, New York (1962) p. 240; C. Cohen‐Tannoudji, A. Kastler, Progress in Optics, vol. 5 (E. Wolf, ed.) North‐Holland, Amsterdam (1966).
23. O. V. Konstantinov, V. I. Perel, Soviet Phys.‐JETP 18, 195 (1964); https://doi.org/SPHJAR A. Corney, G. W. Series, Proc. Phys. Soc. (London) 83, 207 (1964).https://doi.org/PPSOAU
26. E. B. Aleksandrov, ibid 14, 233 (1963); A. Corney, G. W. Series, Proc. Phys. Soc. (London) 83, 213 (1964).https://doi.org/PPSOAU
27. O. Nedelec, M. N. Deschizeaux, J. C. Pebay‐Peyroula, Compt. Rend. 257, 3130 (1963); https://doi.org/COREAF E. B. Aleksandrov, Opt. Spectry. (USSR) 16, 209 (1964).https://doi.org/OPSUA3
28. E. B. Aleksandrov, O. V. Konstantinov, V. I. Perel, V. A. Khodovoi, Soviet Phys.‐JETP 18, 346 (1964); https://doi.org/SPHJAR C. J. Favre, E. Geneux, Phys. Letters 8, 190 (1964).https://doi.org/PHLTAM
29. T. Hadeishi, W. A. Nierenberg, Phys. Rev. Letters 14, 891 (1965).https://doi.org/PRLTAO
31. J. Z. Klose, Phys. Rev. 141, 181 (1966); https://doi.org/PHRVAO W. R. Bennett Jr, Appl. Opt. supplement 1, “Optical Masers,” p. 30 (1962); S. Heron, R. W. P. McWhirter, E. H. Rhoderick, Proc. Roy. Soc. (London) A234, 565 (1956).https://doi.org/PRLAAZ
32. R. G. Fowler, T. M. Holzberlein, C. H. Jacobson, Phys. Rev. 140, A1050 (1965).https://doi.org/PHRVAO
33. L. Brewer, C. G. James, R. G. Brewer, F. E. Stafford, R. H. Berg, G. M. Rosenblatt, Rev. Sci. Instr. 33, 1450 (1962); https://doi.org/RSINAK A. Müller, R. Lumry, H. Kokubun, Rev. Sci. Instr. 36, 1214 (1965); https://doi.org/RSINAK G. M. Lawrence, B. D. Savage, Phys. Rev. 141, 67 (1966).https://doi.org/PHRVAO
34. R. H. Hughes, H. R. Dawson, B. M. Doughty, J. Opt. Soc. Am. 56, 830 (1966).https://doi.org/JOSAAH
Technical knowledge and skills are only some of the considerations that managers have when hiring physical scientists. Soft skills, in particular communication, are also high on the list.
Research exchanges between US and Soviet scientists during the second half of the 20th century may be instructive for navigating today’s debates on scientific collaboration.
The Eisenhower administration dismissed the director of the National Bureau of Standards in 1953. Suspecting political interference with the agency’s research, scientists fought back—and won.
Alternative undergraduate physics courses expand access to students and address socioeconomic barriers that prevent many of them from entering physics and engineering fields. The courses also help all students develop quantitative skills.
Defying the often-perceived incompatibility between the two subjects, some physicists are using poetry to communicate science and to explore the human side of their work.
September 01, 2025 12:00 AM
Get PT in your inbox
Physics Today - The Week in Physics
The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.