Discover
/
Article

Artificial Atoms

JAN 01, 1993
The charge and energy of a sufficiently small particle of metal or semiconductor are quantized just like those of an atom. The current through such a quantum dot or one‐electron transistor reveals atom‐like features in a spectacular way.
Marc A. Kastner

The wizardry of modern semiconductor technology makes it possible to fabricate particles of metal or “pools” of electrons in a semiconductor that are only a few hundred angstroms in size. Electrons in these structures can display astounding behavior. Such structures, coupled to electrical leads through tunnel junctions, have been given various names: single‐electron transistors, quantum dots, zero‐dimensional electron gases and Coulomb islands. In my own mind, however, I regard all of these as artificial atoms—atoms whose effective nuclear charge is controlled by metallic electrodes. Like natural atoms, these small electronic sytems contain a discrete number of electrons and have a discrete spectrum of energy levels. Artificial atoms, however, have a unique and spectacular property: The current through such an atom or the capacitance between its leads can vary by many orders of magnitude when its charge is changed by a single electron. Why this is so, and how we can use this property to measure the level spectrum of an artificial atom, is the subject of this article.

This article is only available in PDF format

References

  1. 1. T. A. Fulton, G. J. Dolan, Phys. Rev. Lett. 59, 109 (1987).https://doi.org/PRLTAO

  2. 2. U. Meirav, M. A. Kastner, S. J. Wind, Phys. Rev. Lett. 65, 771 (1990). https://doi.org/PRLTAO
    M. A. Kastner, Rev. Mod. Phys. 64, 849 (1992).https://doi.org/RMPHAT

  3. 3. L. P. Kouwenhoven, N. C. van derVaart, A. T. Johnson, W. Kool, C. J. P. M. Harmans, J. G. Williamson, A. A. M. Staring, C. T. Foxon, Z. Phys. B 85, 367 (1991), and refs. therein.https://doi.org/ZPCMDN

  4. 4. V. Chandrasekhar, Z. Ovadyahu, R. A. Webb, Phys. Rev. Lett. 67, 2862 (1991). https://doi.org/PRLTAO
    R. J. Brown, M. Pepper, H. Ahmed, D. G. Hasko, D. A. Ritchie, J. E. F. Frost, D. C. Peacock, G. A. C. Jones, J. Phys.: Condensed Matter 2, 2105 (1990).

  5. 5. B. Su, V. J. Goldman, J. E. Cunningham, Science 255, 313 (1992). https://doi.org/SCIEAS
    M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore, A. E. Wetsel, Phys. Rev. Lett. 60, 535 (1988). https://doi.org/PRLTAO
    M. Tewordt, L. Martin‐Moreno, J. T. Nicholls, M. Pepper, M. J. Kelly, V. J. Law, D. A. Ritchie, J. E. F. Frost, G. A. C. Jones, Phys. Rev. B 45, 14407 (1992).https://doi.org/PRBMDO

  6. 6. R. C. Ashoori, H. L. Stormer, J. S. Weiner, L. N. Pfeiffer, S. J. Pearton, K. Baldwin, K. W. West, Phys. Rev. Lett. 68, 3088 (1992).https://doi.org/PRLTAO

  7. 7. E. B. Foxman, P. L. McEuen, U. Meirav, N. S. Wingreen, Y. Meir, P. A. Belk, N. R. Belk, M. A. Kastner, S. J. Wind, “The Effects of Quantum Levels on Transport Through a Coulomb Island,” MIT preprint (July 1992).
    See also A. T. Johnson, L. P. Kouwenhoven, W. de Jong, N. C. van derVaart, C. J. P. M. Harmans, C. T. Foxon, Phys. Rev. Lett. 69, 1592 (1992).https://doi.org/PRLTAO

  8. 8. A. Kumar, Surf. Sci. 263, 335 (1992). https://doi.org/SUSCAS
    A. Kumar, S. E. Laux, F. Stern, Appl. Phys. Lett. 54, 1270 (1989).https://doi.org/APPLAB

  9. 9. D. V. Averin, K. K. Likharev, in Mesoscopic Phenomena in Solids, B. L. Al’tshuler, P. A. Lee, R. A. Webb, eds., Elsevier, Amsterdam (1991), p. 173.

  10. 10. H. vanHouton, C. W. J. Beenakker, Phys. Rev. Lett. 63, 1893 (1989).https://doi.org/PRLTAO

  11. 11. D. V. Averin, A. N. Korotkov, Zh. Eksp. Teor. Fiz. 97, 1661 (1990)
    [ D. V. Averin, A. N. Korotkov, Sov. Phys. JETP 70, 937 (1990) ].https://doi.org/ZETFA7

  12. 12. Y. Meir, N. S. Wingreen, P. A. Lee, Phys. Rev. Lett. 66, 3048 (1991).https://doi.org/PRLTAO

  13. 13. C. W. J. Beenakker, Phys. Rev. B 44, 1646 (1991).https://doi.org/PRBMDO

  14. 14. P. L. McEuen, E. B. Foxman, J. Kinaret, U. Meirav, M. A. Kastner, N. S. Wingreen, S. J. Wind, Phys. Rev. B 45, 11419 (1992).

  15. 15. R. Landauer, IBM J. Res. Dev. 1, 223 (1957).https://doi.org/IBMJAE

  16. 16. L. P. Kouwenhoven, A. T. Johnson, N. C. van derVaart, W. Kool, C. J. P. M. Harmans, C. T. Foxon, Phys. Rev. Lett. 67, 1626 (1991).https://doi.org/PRLTAO

  17. 17. L. J. Geerligs, V. F. Anderegg, P. A. M. Holweg, J. E. Mooij, H. Pothier, D. Esteve, C. Urbina, M. H. Devoret, Phys. Rev. Lett. 64, 2691 (1990).https://doi.org/PRLTAO

  18. 18. H. Grabert, M. H. Devoret, eds., Single Charge Tunneling, Plenum, New York (1992).

  19. 19. R. J. Haug, J. M. Hong, K. Y. Lee, Surf. Sci. 263, 415 (1991).https://doi.org/SUSCAS

More about the authors

Marc A. Kastner, Massachusetts Institute of Technology, Cambridge.

Related content
/
Article
The ability to communicate a key message clearly and concisely to a nonspecialized audience is a critical skill to develop at all educational levels.
/
Article
With strong magnetic fields and intense lasers or pulsed electric currents, physicists can reconstruct the conditions inside astrophysical objects and create nuclear-fusion reactors.
/
Article
A crude device for quantification shows how diverse aspects of distantly related organisms reflect the interplay of the same underlying physical factors.
/
Article
Events held around the world have recognized the past, present, and future of quantum science and technology.
This Content Appeared In
pt-cover_1993_01.jpeg

Volume 46, Number 1

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.