Discover
/
Article

Applications in physics research

MAR 01, 1971
Laser developments are benefiting work in many other fields. Examples are in nonlinear spectroscopy, time and distance measurement, and Raman and Rayleigh scattering.

DOI: 10.1063/1.3022624

John A. Armstrong

Now firmly established as a versatile tool in many branches of science, the laser has taken little more than a decade to develop from a research project itself into an instrument for the support of other research. The number of laser applications in industry, technology and pure science is now so great that no one article could possibly cover them all. Here I will be concentrating on scientific applications only, but even so I must adopt a limited scope. The choice of topics has been restricted by posing the question: Of the many scientific investigations conducted with help from lasers, which ones are feasible only because lasers are available? Applications that satisfy this criterion should be the ones that best emphasize the unique capabilities of the laser as a tool of science.

This article is only available in PDF format

References

  1. 1. W. V. Smith, P. P. Sorokin, The Laser, McGraw‐Hill, New York (1966);
    W. V. Smith, Laser Applications, Artech, Dedham, Mass. (1970);
    Lasers: A Collection of Reprints with Commentary (J. Weber, ed.) Gordon and Breach, New York (1968);
    A Yariv, Quantum Electronics, Wiley, New York (1967).

  2. 2. J. A. Giordmaine, “Nonlinear Optics,” PHYSICS TODAY 22, no. 1, 38 (1969);
    R. W. Minck, R. W. Terhune, C. C. Wang, “Nonlinear Optics” Proc. IEEE 54, 1357 (1966);
    N. Bloembergen, Nonlinear Optics, Benjamin, New York (1965).

  3. 3. S. A. Akhmanov, A. P. Sukhorukov, R. V. Khokhlov, “Self‐focusing and Diffraction of Light in a Nonlinear Medium,” Sov. Phys. Uspekhi 10, 609 (1968).https://doi.org/SOPUAP

  4. 4. S. R. Hartmann, “Photon Echoes,” Sci. Am. 218, no. 4, 32 (1968);
    I. D. Abella, N. A. Kurnit, S. R. Hartmann, “Photon Echoes,” Phys. Rev. 141, 391 (1966).

  5. 5. S. L. McCall, E. L. Hahn, “Self‐Induced Transparency,” Phys. Rev. 183, 457 (1969).https://doi.org/PHRVAO

  6. 6. C. DeMichelis, “Laser Induced Gas Breakdown: A Bibliographical Review,” IEEEJ. Quant. Elec. QE‐5, 188 (1969).https://doi.org/IEJQA7

  7. 7. J. A. Armstrong, A. W. Smith, “Experimental Study of Laser Intensity Fluctuations,” in Progress in Optics (E. Wolf, ed.) North‐Holland, Amsterdam (1967) volume 6, page 213.

  8. 8. M. S. Feld, A. Javan, “Laser‐Induced Line‐Narrowing Effects in Coupled Doppler‐Broadened Transitions,” Phys. Rev. 177, 540 (1969).https://doi.org/PHRVAO

  9. 9. N. Bloembergen, “Wave Propagation in Nonlinear Electromagnetic Media,” Proc. IEEE 51, 124 (1963).https://doi.org/IEEPAD

  10. 10. R. C. Miller, “Optical Second Harmonic Generation in Piezoelectric Crystals,” Appl. Phys. Lett. 5, 17 (1964).https://doi.org/APPLAB

  11. 11. S. Jha, N. Bloembergen, “Nonlinear Optical Susceptibilities in Group IV and III‐V Semiconductors,” Phys. Rev. 171, 891 (1968),
    C. Flytzanis, J. Ducuing, “Second‐order Optical Susceptibilities of III‐V Semiconductors,” Phys. Rev. 178, 1218 (1969).https://doi.org/PHRVAO

  12. 12. N. Bloembergen, P. Lallemand, “Light Waves with Exponential Gain,” in Physics of Quantum Electronics (P. Kelley, B. Lax, P. Tannenwald, eds.), McGraw‐Hill, New York (1966), page 137;
    D. von der Linde, M. Maier, W. Kaiser, “Quantitative Investigations of the Stimulated Raman Effect Using Subnanosecond Light Pulses,” Phys. Rev. 178, 11 (1969).https://doi.org/PHRVAO

  13. 13. J. A. Armstrong, N. Bloembergen, J. Ducuing, D. S. Pershan, “Interaction between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127, 1918 (1962); https://doi.org/PHRVAO
    S. A. Akhmanov and others, “Nonstationary Nonlinear Optical Effects and Ultrashort Light Pulse Formation” IEEE J. Quant. Elect. QE‐4, 598 (1968);
    J. A. Armstrong, E. Courtens, “Pi‐Pulse Propagation in the Presence of Host Dispersion,” IEEE J. Quant. Elect. QE‐5, 249 (1969);
    G. L. Lamb Jr, “Analytical Descriptions of Ultrashort Optical Pulse Propagation in a Resonant Medium,” Rev. Mod. Phys. (to be published).

  14. 14. M. M. T. Loy, Y. R. Shen, “Small‐scale Filaments in Liquids and Tracks of Moving Foci,” Phys. Rev. Lett. 22, 994 (1969); https://doi.org/PRLTAO
    M. M. T. Loy, Y. R. Shen, “Experimental Study of Small‐scale Filaments of Light in Liquids,” Phys. Rev. Lett. 25, 1333 (1970); https://doi.org/PRLTAO
    R. Polloni, C. A. Sacchi, O. Svelto, “Self‐trapping with Picosecond Pulses and Rocking of Molecules,” Phys. Rev. Lett. 23, 690 (1969).https://doi.org/PRLTAO

  15. 15. D. R. Grischkowsky, “Self‐focusing of Light in Potassium Vapor,” Phys. Rev. Lett. 24, 866 (1970).

  16. 16. W. E. LambJr, “Theory of an Optical Maser,” Phys. Rev. 134A, 1429 (1964).https://doi.org/PHRVAO

  17. 17. R. G. Brewer, “Precision Dipole Moment Determination of CH 3 F by Nonlinear Infrared Spectroscopy,” Phys. Rev. Lett. 25, 1639 (1970).https://doi.org/PRLTAO

  18. 18. H. R. Schlossberg, A. Javan, “Hyperfine Structure and Paramagnetic Properties of Excited States of Xenon Studied with a Gas Laser,” Phys. Rev. Lett. 17, 1242 (1966).https://doi.org/PRLTAO

  19. 19. A. C. Luntz, R. G. Brewer, “Zeeman‐Tuned Level Crossing in ‘ Σ  1 CH ” J. Chem. Phys. 53, 3380 (1970); https://doi.org/JCPSA6
    A. C. Luntz, R. G. Brewer, K. L. Foster, J. D. Swalen, “Level Crossing in CH 4 Observed by Nonlinear Absorption,” Phys. Rev. Lett. 23, 951 (1969).https://doi.org/PRLTAO

  20. 20. A. D. McClean, M. Yoshimine, “Computed Ground‐State Properties of FH and C1H,” J. Chem. Phys. 47, 3256 (1967).https://doi.org/JCPSA6

  21. 21. A. Javan, “Measurement of the Frequency of Light,” Ann. N.Y. Acad. Sci. 168, 715 (1970).https://doi.org/ANYAA9

  22. 22. K. Shimoda, “Absolute Frequency Stability of the 3.39‐micron Laser on a CH 4 Line,” IEEE Trans. IM‐17, 343 (1968);
    R. L. Barger, J. L. Hall, “Pressure Shift and Broadening of Methane Line at 3.39 microns Studied by Laser‐Saturated Molecular Absorption,” Phys. Rev. Lett. 22, 4 (1969).https://doi.org/PRLTAO

  23. 23. R. L. Barger, J. C. Hall, “Precision Wavelength Measurement of the Methane 3.39‐micron Saturated Absorption Line by Laser Controlled Interferometry,” in Sixth International Quantum Electronics Conference: Digest of Technical Papers, Kyoto (1970), page 4.

  24. 24. D. R. Sokoloff, A. Sanchez, R. M. Osgood, A. Javan, “Extension of Laser Harmonic‐Frequency Mixing into the 5‐micron Regions” Appl. Phys. Lett. 17, 257 (1970).

  25. 25. V. Daneau, D. Sokoloff, A. Sanchez, A. Javan, “Extension of Laser Harmonicfree Mixing Techniques into the 9‐micron Region with an Infrared Metal‐Metal Point Contact Diode,” Appl. Phys. Lett. 15, 398 (1969).https://doi.org/APPLAB

  26. 26. K. M. Evenson, J. S. Wells, J. M. Matarrese, “Absolute Frequency Measurements of the CO 2 ‐ cw Laser at 28 THz (10.6 microns),” Appl. Phys. Lett. 16, 251 (1970).https://doi.org/APPLAB

  27. 27. C. O. Alley and others, “Laser Ranging Retro‐reflector: Continuing Measurements and Expected Results,” Science 167, 458 (1970); https://doi.org/SCIEAS
    J. E. Faller, E. J. Wampler, “The Lunar Laser Reflector” Sci. Am. 222, no. 3 (1970).

  28. 28. Light Scattering in Solids, (G. B. Wright, ed.) Springer‐Verlag, New York (1969).

  29. 29. S. P. S. Porto, J. A. Giordmaine, T. C. Damen, “Depolarization of Raman Scattering in Calcite,” Phys. Rev. 147, 608 (1966).https://doi.org/PHRVAO

  30. 30. J. F. Scott, S. P. S. Porto, “Longitudinal and Transverse Optical Lattice Vibrations in Quartz,” Phys. Rev. 161, 903 (1967).https://doi.org/PHRVAO

  31. 31. C. H. Henry, J. J. Hopfield, “Raman Scattering by Polaritons,” Phys. Rev. Lett. 15, 964 (1965); https://doi.org/PRLTAO
    S. P. S. Porto, B. Tell, T. C. Damen, “Near‐Forward Raman Scattering in Zinc Oxide,” Phys. Rev. Lett. 16, 450 (1966).https://doi.org/PRLTAO

  32. 32. G. Burns, B. A. Scott, “Raman Studies of Underdamped Soft Modes in PbTiO 3,” Phys. Rev. Lett. 25, 167 (1970).https://doi.org/PRLTAO

  33. 33. G. Burns, B. A. Scott, “Raman Spectra of Polycrystalline Solids,” Phys. Rev. Lett. 25, 1191 (1970).https://doi.org/PRLTAO

  34. 34. B. Chu, “Laser Light Scattering,” in Annual Review of Physical Chemistry, 21, 145 (1970).

  35. 35. C. S. Bak, W. I. Goldburg, P. N. Pusey, “Light‐scattering Study of the Critical Behavior of a Three‐Component Liquid Mixture,” Phys. Rev. Lett. 25, 1420 (1970); https://doi.org/PRLTAO
    D. C. Henry, A. L. Swinney, H. Z. Cummins, “Rayleigh Linewidth in Xe near the Critical Point,” Phys. Rev. Lett. 25, 1170 (1970).https://doi.org/PRLTAO

  36. 36. K. Kawasaki, “Correlation Function Approach to the Transport Coefficients near the Critical Point,” Phys. Rev. 150, 291 (1966)
    and Ann. Phys. (N.Y.), to be published.

  37. 37. S. B. Dubin, J. H. Lunacek, G. B. Benedek, “Observation of the Spectrum of Light Scattered by Solutions of Biological Macromolecules,” Proc. Nat. Acad. Sci. 57, 1164 (1967);
    R. Foord and others “Determination of Diffusion Coefficients of Haemocyanin at Low Concentrations by Intensity Fluctuation Spectroscopy,” Nature 227, 242 (1970).

  38. 38. R. T. Hodgson, “Vacuum‐ultraviolet Laser Action Observed in the Lyman Bands of Molecular Hydrogen,” Phys. Rev. Lett. 25, 494 (1970).https://doi.org/PRLTAO

More about the Authors

John A. Armstrong. IBM Thomas J. Watson Research Center, Yorktown Heights, N.Y..

Related content
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
/
Article
Bottom-up self-assembly is a powerful approach to engineering at small scales. Special strategies are needed to formulate components that assemble into predetermined shapes with precise sizes.
/
Article
The polymath scientist leaves behind a monumental legacy in both the scientific and political realms.
This Content Appeared In
pt-cover_1971_03.jpeg

Volume 24, Number 3

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.