Discover
/
Article

Applications in energy, optics and electronics

MAY 01, 1980
One can use thin‐film technologies for heat mirrors, anti‐reflection coatings, interference filters, solar cells, metal contacts, Schottky barriers and Josephson junctions.

DOI: 10.1063/1.2914079

Robert Rosenberg
Tung‐Sheng Kuan
Harold J. Hovel

Thin films play a vital role in nearly all electronic and optical devices. They have long been familiar as antireflection coatings on window glass, video screens, camera lenses and other optical devices; these are generally films less than 100 nm thick made from a transparent (dielectric) material with a refractive index less than that of the substrate. In solar‐energy conversion, similar layers of thin films are now serving as antireflection coatings on solar‐energy collectors; semitransparent metal films are used in Schottky‐barrier solar cells; combinations of thin films are used for photothermal devices that generate low‐ or high‐grade heat; and thin semiconductor films on metal or glass substrates form a promising type of low‐cost solar cell. In integrated circuits, of course, thin films are pervasive: metal layers form all onchip electrical connections and gate regions for field‐effect transistors, to name just two examples; oxide or nitride films form insulating barriers between other films; and layers of semiconductors are integral parts of all the structures. One of the newest applications of thin‐film technologies is in circuits based films made from superconductors forming, for example, Josephson junctions such as the one shown in figure 1.

References

  1. 1. B. O. Seraphin, in Solar Energy Conversion, Topics in Applied Physics 31, B. O. Seraphin, ed., Springer, Berlin (1979).

  2. 2. C. M. Lampert, Sol. En. Materials 1, 319 (1979).

  3. 3. G. E. Carver, Thin Solid Films 63, 169 (1979).https://doi.org/THSFAP

  4. 4. D. C. Booth, D. D. Allred, B. O. Seraphin, Sol. En. Materials 2, 107 (1979).

  5. 5. R. E. Peterson, J. R. Ramsey, J. Vac. Sci. Technol. 12, 471 (1975).https://doi.org/JVSTAL

  6. 6. J. C. C. Fan, C. O. Bozler, B. J. Palm, Appl. Phys. Lett. 35, 875 (1979).https://doi.org/APPLAB

  7. 7. N. W. Geis, D. C. Flanders, D. A. Antoniadis, H. I. Smith, Tech. Digest 1979 IEDM, Washington, D.C., page 210.

  8. 8. F. M. d’Heurle, R. Rosenberg in Physics of Thin Films 7, Academic, New York (1973), page 257.

  9. 9. D. Chaabra, N. Ainslie, D. Jepson, Proc. of the ECS Meeting, Dallas, Texas, May, 1967.

  10. 10. I. Ames, F. M. d’Heurle, R. E. Horstmann, IBM J. Res. and Dev. 14, 461 (1970).

  11. 11. R. Rosenberg, L. Berenbaum, in Proc. Europhys. Conf. on Atomic Transport, Marstrand, Sweden, June, 1970.

  12. 12. R. Rosenberg, M. J. Sullivan, J. K. Howard in Thin Films—Interdiffusion and Reactions, J. M. Poate, K. N. Tu, J. W. Mayer, eds., Wiley, New York, (1978), page 13.

  13. 13. D. M. Mattox, Thin Solid Films 18, 173 (1973).https://doi.org/THSFAP

  14. 14. A. Munitz, Y. Komem, Thin Solid Films 37, 171 (1976).https://doi.org/THSFAP

  15. 15. K. Nakamura, M. A. Nicolet, J. W. Mayer, R. J. Blattner, C. A. Evans, Jr., J. Appl. Phys. 46, 4678 (1975).https://doi.org/JAPIAU

  16. 16. Test results obtained in conjunction with P. Garbarino and J. Gardiner, IBM, East Fishkill, New York.

  17. 17. R. F. Lever, J. K. Howard, W. K. Chu, P. J. Smith, J. Vac. Sci. Technol. 14, 158 (1977).https://doi.org/JVSTAL

  18. 18. T. S. Kuan, P. Ho, I. Ohodomari, IBM report.

  19. 19. J. H. Greiner, C. J. Kircher, S. P. Klepner, S. K. Lahiri, A. J. Warnecke, S. Basavaiah, E. T. Yen, J. M. Baker, P. R. Brosious, H.‐C. W. Huang, M. Murakami, I. Ames, IBM J. Res. Develop., 24, 195 (1980).

  20. 20. J. M. Baker, C. J. Kircher, J. W. Matthews, IBM J. Res. Develop., 24, 223 (1980).

  21. 21. J. H. Greiner, J. Appl. Phys. 45, 32 (1974).https://doi.org/JAPIAU

  22. 22. M. Murakami, C. J. Kircher, IEEE Proc. on Magnetics Mag‐15, 44 (1977).

  23. 23. M. Murakami, Acta Met. 26, 175 (1978); https://doi.org/AMETAR
    M. Murakami, Thin Solid Films 55, 101 (1978), https://doi.org/THSFAP
    M. Murakami, Thin Solid Films 59, 105 (1979); https://doi.org/THSFAP
    T. S. Kuan and M. Murakami, IBM report.

More about the Authors

Robert Rosenberg. IBM Thomas J. Watson Research Center, Yorktown Heights, New York.

Tung‐Sheng Kuan. IBM Thomas J. Watson Research Center, Yorktown Heights, New York.

Harold J. Hovel. IBM Thomas J. Watson Research Center, Yorktown Heights, New York.

This Content Appeared In
pt-cover_1980_05.jpeg

Volume 33, Number 5

Related content
/
Article
Technical knowledge and skills are only some of the considerations that managers have when hiring physical scientists. Soft skills, in particular communication, are also high on the list.
/
Article
Professional societies can foster a sense of belonging and offer early-career scientists opportunities to give back to their community.
/
Article
Interviews offer a glimpse of how physicists get into—and thrive in—myriad nonacademic careers.
/
Article
Research exchanges between US and Soviet scientists during the second half of the 20th century may be instructive for navigating today’s debates on scientific collaboration.
/
Article
The Eisenhower administration dismissed the director of the National Bureau of Standards in 1953. Suspecting political interference with the agency’s research, scientists fought back—and won.
/
Article
Alternative undergraduate physics courses expand access to students and address socioeconomic barriers that prevent many of them from entering physics and engineering fields. The courses also help all students develop quantitative skills.

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.