Applications in energy, optics and electronics
DOI: 10.1063/1.2914079
Thin films play a vital role in nearly all electronic and optical devices. They have long been familiar as antireflection coatings on window glass, video screens, camera lenses and other optical devices; these are generally films less than 100 nm thick made from a transparent (dielectric) material with a refractive index less than that of the substrate. In solar‐energy conversion, similar layers of thin films are now serving as antireflection coatings on solar‐energy collectors; semitransparent metal films are used in Schottky‐barrier solar cells; combinations of thin films are used for photothermal devices that generate low‐ or high‐grade heat; and thin semiconductor films on metal or glass substrates form a promising type of low‐cost solar cell. In integrated circuits, of course, thin films are pervasive: metal layers form all onchip electrical connections and gate regions for field‐effect transistors, to name just two examples; oxide or nitride films form insulating barriers between other films; and layers of semiconductors are integral parts of all the structures. One of the newest applications of thin‐film technologies is in circuits based films made from superconductors forming, for example, Josephson junctions such as the one shown in figure 1.
References
1. B. O. Seraphin, in Solar Energy Conversion, Topics in Applied Physics 31, B. O. Seraphin, ed., Springer, Berlin (1979).
2. C. M. Lampert, Sol. En. Materials 1, 319 (1979).
3. G. E. Carver, Thin Solid Films 63, 169 (1979).https://doi.org/THSFAP
4. D. C. Booth, D. D. Allred, B. O. Seraphin, Sol. En. Materials 2, 107 (1979).
5. R. E. Peterson, J. R. Ramsey, J. Vac. Sci. Technol. 12, 471 (1975).https://doi.org/JVSTAL
6. J. C. C. Fan, C. O. Bozler, B. J. Palm, Appl. Phys. Lett. 35, 875 (1979).https://doi.org/APPLAB
7. N. W. Geis, D. C. Flanders, D. A. Antoniadis, H. I. Smith, Tech. Digest 1979 IEDM, Washington, D.C., page 210.
8. F. M. d’Heurle, R. Rosenberg in Physics of Thin Films 7, Academic, New York (1973), page 257.
9. D. Chaabra, N. Ainslie, D. Jepson, Proc. of the ECS Meeting, Dallas, Texas, May, 1967.
10. I. Ames, F. M. d’Heurle, R. E. Horstmann, IBM J. Res. and Dev. 14, 461 (1970).
11. R. Rosenberg, L. Berenbaum, in Proc. Europhys. Conf. on Atomic Transport, Marstrand, Sweden, June, 1970.
12. R. Rosenberg, M. J. Sullivan, J. K. Howard in Thin Films—Interdiffusion and Reactions, J. M. Poate, K. N. Tu, J. W. Mayer, eds., Wiley, New York, (1978), page 13.
13. D. M. Mattox, Thin Solid Films 18, 173 (1973).https://doi.org/THSFAP
14. A. Munitz, Y. Komem, Thin Solid Films 37, 171 (1976).https://doi.org/THSFAP
15. K. Nakamura, M. A. Nicolet, J. W. Mayer, R. J. Blattner, C. A. Evans, Jr., J. Appl. Phys. 46, 4678 (1975).https://doi.org/JAPIAU
16. Test results obtained in conjunction with P. Garbarino and J. Gardiner, IBM, East Fishkill, New York.
17. R. F. Lever, J. K. Howard, W. K. Chu, P. J. Smith, J. Vac. Sci. Technol. 14, 158 (1977).https://doi.org/JVSTAL
18. T. S. Kuan, P. Ho, I. Ohodomari, IBM report.
19. J. H. Greiner, C. J. Kircher, S. P. Klepner, S. K. Lahiri, A. J. Warnecke, S. Basavaiah, E. T. Yen, J. M. Baker, P. R. Brosious, H.‐C. W. Huang, M. Murakami, I. Ames, IBM J. Res. Develop., 24, 195 (1980).
20. J. M. Baker, C. J. Kircher, J. W. Matthews, IBM J. Res. Develop., 24, 223 (1980).
21. J. H. Greiner, J. Appl. Phys. 45, 32 (1974).https://doi.org/JAPIAU
22. M. Murakami, C. J. Kircher, IEEE Proc. on Magnetics Mag‐15, 44 (1977).
23. M. Murakami, Acta Met. 26, 175 (1978); https://doi.org/AMETAR
M. Murakami, Thin Solid Films 55, 101 (1978), https://doi.org/THSFAP
M. Murakami, Thin Solid Films 59, 105 (1979); https://doi.org/THSFAP
T. S. Kuan and M. Murakami, IBM report.
More about the Authors
Robert Rosenberg. IBM Thomas J. Watson Research Center, Yorktown Heights, New York.
Tung‐Sheng Kuan. IBM Thomas J. Watson Research Center, Yorktown Heights, New York.
Harold J. Hovel. IBM Thomas J. Watson Research Center, Yorktown Heights, New York.