Discover
/
Article

Applications in energy, optics and electronics

MAY 01, 1980
One can use thin‐film technologies for heat mirrors, anti‐reflection coatings, interference filters, solar cells, metal contacts, Schottky barriers and Josephson junctions.
Robert Rosenberg
Tung‐Sheng Kuan
Harold J. Hovel

Thin films play a vital role in nearly all electronic and optical devices. They have long been familiar as antireflection coatings on window glass, video screens, camera lenses and other optical devices; these are generally films less than 100 nm thick made from a transparent (dielectric) material with a refractive index less than that of the substrate. In solar‐energy conversion, similar layers of thin films are now serving as antireflection coatings on solar‐energy collectors; semitransparent metal films are used in Schottky‐barrier solar cells; combinations of thin films are used for photothermal devices that generate low‐ or high‐grade heat; and thin semiconductor films on metal or glass substrates form a promising type of low‐cost solar cell. In integrated circuits, of course, thin films are pervasive: metal layers form all onchip electrical connections and gate regions for field‐effect transistors, to name just two examples; oxide or nitride films form insulating barriers between other films; and layers of semiconductors are integral parts of all the structures. One of the newest applications of thin‐film technologies is in circuits based films made from superconductors forming, for example, Josephson junctions such as the one shown in figure 1.

This article is only available in PDF format

References

  1. 1. B. O. Seraphin, in Solar Energy Conversion, Topics in Applied Physics 31, B. O. Seraphin, ed., Springer, Berlin (1979).

  2. 2. C. M. Lampert, Sol. En. Materials 1, 319 (1979).

  3. 3. G. E. Carver, Thin Solid Films 63, 169 (1979).https://doi.org/THSFAP

  4. 4. D. C. Booth, D. D. Allred, B. O. Seraphin, Sol. En. Materials 2, 107 (1979).

  5. 5. R. E. Peterson, J. R. Ramsey, J. Vac. Sci. Technol. 12, 471 (1975).https://doi.org/JVSTAL

  6. 6. J. C. C. Fan, C. O. Bozler, B. J. Palm, Appl. Phys. Lett. 35, 875 (1979).https://doi.org/APPLAB

  7. 7. N. W. Geis, D. C. Flanders, D. A. Antoniadis, H. I. Smith, Tech. Digest 1979 IEDM, Washington, D.C., page 210.

  8. 8. F. M. d’Heurle, R. Rosenberg in Physics of Thin Films 7, Academic, New York (1973), page 257.

  9. 9. D. Chaabra, N. Ainslie, D. Jepson, Proc. of the ECS Meeting, Dallas, Texas, May, 1967.

  10. 10. I. Ames, F. M. d’Heurle, R. E. Horstmann, IBM J. Res. and Dev. 14, 461 (1970).

  11. 11. R. Rosenberg, L. Berenbaum, in Proc. Europhys. Conf. on Atomic Transport, Marstrand, Sweden, June, 1970.

  12. 12. R. Rosenberg, M. J. Sullivan, J. K. Howard in Thin Films—Interdiffusion and Reactions, J. M. Poate, K. N. Tu, J. W. Mayer, eds., Wiley, New York, (1978), page 13.

  13. 13. D. M. Mattox, Thin Solid Films 18, 173 (1973).https://doi.org/THSFAP

  14. 14. A. Munitz, Y. Komem, Thin Solid Films 37, 171 (1976).https://doi.org/THSFAP

  15. 15. K. Nakamura, M. A. Nicolet, J. W. Mayer, R. J. Blattner, C. A. Evans, Jr., J. Appl. Phys. 46, 4678 (1975).https://doi.org/JAPIAU

  16. 16. Test results obtained in conjunction with P. Garbarino and J. Gardiner, IBM, East Fishkill, New York.

  17. 17. R. F. Lever, J. K. Howard, W. K. Chu, P. J. Smith, J. Vac. Sci. Technol. 14, 158 (1977).https://doi.org/JVSTAL

  18. 18. T. S. Kuan, P. Ho, I. Ohodomari, IBM report.

  19. 19. J. H. Greiner, C. J. Kircher, S. P. Klepner, S. K. Lahiri, A. J. Warnecke, S. Basavaiah, E. T. Yen, J. M. Baker, P. R. Brosious, H.‐C. W. Huang, M. Murakami, I. Ames, IBM J. Res. Develop., 24, 195 (1980).

  20. 20. J. M. Baker, C. J. Kircher, J. W. Matthews, IBM J. Res. Develop., 24, 223 (1980).

  21. 21. J. H. Greiner, J. Appl. Phys. 45, 32 (1974).https://doi.org/JAPIAU

  22. 22. M. Murakami, C. J. Kircher, IEEE Proc. on Magnetics Mag‐15, 44 (1977).

  23. 23. M. Murakami, Acta Met. 26, 175 (1978); https://doi.org/AMETAR
    M. Murakami, Thin Solid Films 55, 101 (1978), https://doi.org/THSFAP
    M. Murakami, Thin Solid Films 59, 105 (1979); https://doi.org/THSFAP
    T. S. Kuan and M. Murakami, IBM report.

More about the Authors

Robert Rosenberg. IBM Thomas J. Watson Research Center, Yorktown Heights, New York.

Tung‐Sheng Kuan. IBM Thomas J. Watson Research Center, Yorktown Heights, New York.

Harold J. Hovel. IBM Thomas J. Watson Research Center, Yorktown Heights, New York.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1980_05.jpeg

Volume 33, Number 5

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.