Discover
/
Article

Amorphous semiconductors

OCT 01, 1976
Research on their electronic states, vibrations and structural changes helps us understand these glasslike materials, which show promise in switching and amplification, as memories, and for silverless photography.

DOI: 10.1063/1.3024406

Jan Tauc

In recent years the physics of amorphous semiconductors has developed into a field so extensive and ramified that it is difficult to review in one paper. Various researchers emphasize different achievements; my choice of these is based on an attempt to give the reader an idea of the breadth of the research—from fundamental questions on electron states and atomic motions to the principles underlying some of the applications. The main difficulty with such a presentation of a more or less consistent picture is that there will necessarily be an inadequate discussion of alternative interpretations, so that the reader may get the mistaken impression that the suggested models were uniquely deduced from the experimental data. Unfortunately, crucial experiments that distinguish between different interpretations are still scarce. Nevertheless, experimental and theoretical work in the last five years have shown that some previously suggested plausible assumptions were incorrect, and the field has achieved, besides its extensive growth, significant progress in the understanding of the fundamental physics.

References

  1. 1. M. H. Cohen, PHYSICS TODAY, May 1971, page 26.

  2. 2. D. Weaire, Phys. Rev. Lett. 26, 1541 (1971).https://doi.org/PRLTAO

  3. 3. P. W. Anderson, Phys. Rev. Lett. 34, 953 (1975).https://doi.org/PRLTAO

  4. 4. W. E. Spear, P. G. LeComber, Solid State Commun. 17, 1193 (1975).https://doi.org/SSCOA4

  5. 5. J. Tauc, F. J. DeSalvo, G. E. Peterson, D. L. Wood, in Amorphous Magnetism (H. O. Hooper, A. M. deGraaf, eds.), Plenum, New York (1973), page 119.

  6. 6. D. Emin, in Electronic and Structural Properties of Amorphous Semiconductors (P. G. LeComber, J. Mort, eds.), Academic, London, 1973, page 261.

  7. 7. N. F. Mott, E. A. Davis, R. A. Street, Phil. Mag. 32, 961 (1975); https://doi.org/PHMAA4
    R. A. Street, N. F. Mott, Phys. Rev. Lett. 35, 1293 (1975).https://doi.org/PRLTAO

  8. 8. S. G. Bishop, U. Strom, P. C. Taylor, Phys. Rev. Lett. 34, 1346 (1975).https://doi.org/PRLTAO

  9. 9. H. Fritzsche, in Amorphous and Liquid Semiconductors (J. Tauc, ed.) Plenum, New York (1974) page 159.

  10. 10. C. H. Seager, D. Emin, R. K. Quinn, Phys. Rev. B 8, 4746 (1973).https://doi.org/PLRBAQ

  11. 11. N. F. Mott, E. A. Davis, Electronic Processes in Non‐Crystalline Materials, Clarendon, Oxford (1971).

  12. 12. J. J. Hauser, Solid State Commun. 13, 1451 (1973).https://doi.org/SSCOA4

  13. 13. H. Scher, E. W. Montroll, Phys. Rev. B 12, 2455 (1975).https://doi.org/PLRBAQ

  14. 14. W. van Roosbroeck, H. C. CaseyJr, Phys. Rev. B 5, 2154 (1972); https://doi.org/PLRBAQ
    C. Popescu, H. K. Henisch, Phys. Rev. B 11, 1563 (1975).https://doi.org/PLRBAQ

  15. 15. A. P. DeFonzo, J. Tauc, Solid State Commun. 18, 937 (1976).https://doi.org/SSCOA4

  16. 16. G. Lucovsky, in Amorphous and Liquid Semiconductors (J. Stuke, W. Brenig, eds.), Taylor and Francis, London (1974), page 1099.

  17. 17. R. Alben, J. E. SmithJr, M. H. Brodsky, D. Weaire, Phys. Rev. Lett. 30, 1141 (1973).https://doi.org/PRLTAO

  18. 18. P. W. Anderson, B. I. Halperin, C. M. Varma, Phil. Mag. 25, 1 (1972); https://doi.org/PHMAA4
    W. A. Phillips, J. Low Temp. Phys. 7, 351 (1972).https://doi.org/JLTPAC

  19. 19. R. C. Zeller, R. O. Pohl, Phys. Rev. B 4, 2029 (1971).https://doi.org/PLRBAQ

  20. 20. S. R. Ovshinsky, H. Fritzsche, IEEE Trans. ED‐20, 91 (1973).

  21. 21. J. Dresner, G. B. Stringfellow, J. Phys. Chem. Solids 29, 303 (1968); https://doi.org/JPCSAW
    K. S. Kim, D. Turnbull, J. Appl. Phys. 44, 5237 (1973) https://doi.org/JAPIAU
    and K. S. Kim, D. Turnbull, J. Appl. Phys. 45, 3447 (1974).https://doi.org/JAPIAU , J. Appl. Phys.

  22. 22. E. Finkman, J. Tauc, A. P. DeFonzo, in the Proceedings of the 12th International Conference on Physics of Semiconductors, (Stuttgart), Teubner (1974), page 1022.

  23. 23. A. D. Pearson, B. G. Bagley, Mat. Res. Bull. 6, 1041 (1971).https://doi.org/MRBUAC

  24. 24. J. P. De Neufville, S. C. Moss, S. R. Ovshinsky, J. Non‐Crystalline Solids, 13, 191 (1973/74).https://doi.org/JNCSBJ

  25. 25. S. R. Ovshinsky, K. Sapru, in reference 16, page 447.

  26. 26. H. Fritszche, J. Japan. Soc. Appl. Phys. 43 (Suppl.), 32 (1974).

  27. 27. S. R. Ovshinsky, P. Klose, in Non‐Silver Photographic Processes, (R. J. Cox, ed.), Academic, New York (1975), page 61.

  28. 28. K. E. Peterson, D. Adler, J. Appl. Phys. 47, 256 (1976).https://doi.org/JAPIAU

More about the Authors

Jan Tauc. Brown University and a consultant to Bell Laboratories, Murray Hill, New Jersey.

This Content Appeared In
pt-cover_1976_10.jpeg

Volume 29, Number 10

Related content
/
Article
Technical knowledge and skills are only some of the considerations that managers have when hiring physical scientists. Soft skills, in particular communication, are also high on the list.
/
Article
Professional societies can foster a sense of belonging and offer early-career scientists opportunities to give back to their community.
/
Article
Interviews offer a glimpse of how physicists get into—and thrive in—myriad nonacademic careers.
/
Article
Research exchanges between US and Soviet scientists during the second half of the 20th century may be instructive for navigating today’s debates on scientific collaboration.

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.