Discover
/
Article

Advances in light‐emitting diodes

DEC 01, 1973
Short‐range impurity states in ternary III‐V compounds enhance radiative recombination rates, thereby aiding the color tunability of semiconductor lamps and lasers.
C. B. Duke
N. Holonyak

The bright future of semiconductor lamps, especially “light‐emitting diodes,” is by now widely recognized. This recognition is fairly recent even though the existence of light emission from semiconductor junctions has been known for almost twenty years. The transformation of LED’s from laboratory devices to commercial products constitutes a good example of the effective interaction between solid‐state materials technology and the quantum theory of condensed matter. Moreover, this interaction continues to generate changes in the materials, fabrication techniques and cost of LED’s. In this article we will examine the influence of the fundamental principles of the quantum theory of solids on the design of semiconductor light emitters. Emphasis is placed on some of the more recently recognized consequences of these principles for tunable solid‐state light sources. In particular, we describe how breakdowns of momentum conservation caused by the presence of neutral impurities in semiconductors has exerted a profound influence on the materials used to construct solid‐state lamps.

This article is only available in PDF format

References

  1. 1. A. A. Bergh, P. J. Dean, Proc. IEEE 60, 156 (1972); https://doi.org/IEEPAD
    C. J. Nuese, H. Kressel, I. Ladany, IEEE Spectrum. May 1972, page 28.

  2. 2. N. Holonyak, Jr, S. F. Bevacqua, Appl. Phys. Lett. 1, 82 (1962).https://doi.org/APPLAB

  3. 3. D. G. Thomas, J. J. Hopfield, Phys. Rev. 150, 680 (1966); https://doi.org/PHRVAO
    R. A. Logan, H. G. White, W. Wiegmann, Appl. Phys. Lett. 13, 139 (1968); https://doi.org/APPLAB
    P. J. Dean, J. Luminescence 1,2, 398 (1970).https://doi.org/JLUMA8

  4. 4. P. J. Dean, R. A. Faulkner, Appl. Phys. Lett. 14, 210 (1969).https://doi.org/APPLAB

  5. 5. W. O. Groves, A. H. Herzog, M. G. Craford, Appl. Phys. Lett. 19, 184 (1971).https://doi.org/APPLAB

  6. 6. D. R. Scifres, N. Holonyak, Jr, C. B. Duke, G. G. Kleiman, A. B. Kunz, M. G. Craford, W. O. Groves, A. H. Herzog, Phys. Rev. Lett. 27, 191 (1971); https://doi.org/PRLTAO
    D. R. Scifres, N. Holonyak, Jr, H. M. Macksey, R. D. Dupuis, G. W. Zack, M. G. Craford, W. O. Groves, D. L. Keune, J. Appl. Phys. 43, 2368 (1972).https://doi.org/JAPIAU

  7. 7. N. Holonyak, Jr, D. R. Scifres, H. M. Macksey, R. D. Dupuis, Appl. Phys. Lett. 20, 11 (1972); https://doi.org/APPLAB
    D. R. Scifres, H. M. Macksey, N. Holonyak, Jr, R. D. Dupuis, G. W. Zack, C. B. Duke, G. G. Kleiman, A. B. Kunz, Phys. Rev. B 5, 2206 (1972).https://doi.org/PLRBAQ

  8. 8. C. Kittel, Quantum Theory of Solids, Wiley, New York (1963); pages 179–80.

  9. 9. M. Aven in II–VI Semiconducting Compounds, 1967 International Conference, (D. G. Thomas, ed.) Benjamin, New York (1967); page 1232.

  10. 10. A. H. Herzog, W. O. Groves, M. G. Craford, J. Appl. Phys. 40, 1830 (1969).https://doi.org/JAPIAU

  11. 11. H. M. Macksey, N. Holonyak, Jr, D. R. Scifres, R. D. Dupuis, G. W. Zack, Appl. Phys. Lett. 19, 271 (1971).https://doi.org/APPLAB

  12. 12. H. Kaplan, J. Phys. Chem. Solids 24, 1593 (1964); https://doi.org/JPCSAW
    W. Paul in Proceedings of the Ninth International Conference on the Physics of Semiconductors, Moscow, USSR Nauka, Leningrad, USSR (1968); Vol. 1, page 16.

  13. 13. R. A. Faulkner, Phys. Rev. 175, 991 (1968).https://doi.org/PHRVAO

  14. 14. C. B. Duke, D. L. Smith, G. G. Kleiman, H. M. Macksey, N. Holonyak, Jr, R. D. Dupuis, J. C. Campbell, J. Appl. Phys. 43, 5134 (1972).https://doi.org/JAPIAU

  15. 15. R. D. Burnham, N. Holonyak, Jr, D. L. Keune, D. R. Scifres, R. D. Dupuis, Appl. Phys. Lett. 10, 430 (1970).https://doi.org/APPLAB

  16. 16. N. Holonyak, Jr, D. R. Scifres, M. G. Craford, W. O. Groves, D. L. Keune, Appl. Phys. Lett. 19, 256 (1971). https://doi.org/APPLAB
    N. Holonyak, Jr, D. R. Scifres, H. M. Macksey, R. D. Dupuis, Y. S. Moroz, C. B. Duke, G. G. Kleiman, F. V. Williams, Phys. Rev. Lett. 28, 230 (1972); https://doi.org/PRLTAO
    N. Holonyak, Jr, R. D. Dupuis, H. M. Macksey, G. W. Zack, M. G. Craford, D. Finn, IEEE J. Quantum Electron. QE‐9, 379 (1973).https://doi.org/IEJQA7

  17. 17. V. S. Konoplev, A. A. Gippius, Preprint ♯l64, Lebedev Institute, Moscow (1971).

  18. 18. M. G. Craford, D. L. Keune, W. O. Groves, A. H. Herzog, J. Electron Mater. 2, 137 (1973).https://doi.org/JECMA5

More about the Authors

C. B. Duke. Xerox Research Laboratories and University of Rochester.

N. Holonyak. Materials Research Laboratory, University of Illinois, Urbana.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1973_12.jpeg

Volume 26, Number 12

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.