Discover
/
Article

Advanced Accelerator Concepts

JUL 01, 1994
While near‐term ideas for e+e colliders range from superconducting linacs to ultrarelativistic klystrons, future particle physicists may collide multi‐TeV beams of particles accelerated by specially tailored plasmas.

DOI: 10.1063/1.881396

Jonathan S. Wurtele

High‐energy accelerators have been physicists’ main tools for exploring the building blocks of matter for more than 60 years. During this time the particle energy has increased exponentially as a result of a combination of improvements in existing machines and the invention of new acceleration techniques. Historically, whenever a given type of accelerator has reached the limit of its performance, an innovative idea for particle manipulation, storage, cooling or acceleration has made possible experiments at ever higher energies. The tremendous increase in the energy of accelerators has not, however, been without an increase in capital costs. The cancellation of the Superconducting Super Collider makes timely an examination of possible alternative concepts for investigating some of the same physics.

References

  1. 1. B. Richter, in The State of Particle Accelerators and High Energy Physics, AIP Conf. Proc. 92, R. A. Carrigan. F. R. Huson, M. Month, eds., AIP, New York, (1982), p. 43.
    J. T. Seeman, Annu. Rev. Nucl. Part. Sci. 41, 389 (1991).https://doi.org/ARPSDF

  2. 2. G. Loew, Beamline 22 (4), 21 (1992).
    R. H. Siemann, in Proc. 1993 IEEE Particle Accelerator Conf., IEEE, Piscataway, N.J. (1993), p. 532.

  3. 3. R. B. Palmer, Annu. Rev. Nucl. Part. Sci. 40, 529 (1990). https://doi.org/ARPSDF
    U. Amaldi, “Introduction to the Next Generation of Linear Colliders,” CERN‐EP/87‐28, CERN, Geneva, Switzerland (August 1987).
    M. Tigner, in Advanced Accelerator Concepts, AIP Conf. Proc. 279, J. S. Wurtele, ed., AIP, New York (1993), p. 1.

  4. 4. R. Blankenbecler, S. D. Drell, Phys. Rev. Lett. 61, 2324 (1988). https://doi.org/PRLTAO
    P. Chen, V. Telnov, Phys. Rev. Lett. 63, 1796 (1989).https://doi.org/PRLTAO

  5. 5. T. Weiland et al., in Proc. ECFA Workshop on e+e− Linear Colliders, MPI‐PHE/93/14, R. Settles, ed., Max Planck Institute, Munich, Germany (1993), p. 121.

  6. 6. M. Tigner, in Proc. ECFA Workshop on e+e− Linear Colliders, MPI‐PHE/93/14, R. Settles, ed., Max Planck Institute, Munich, Germany (1993), p. 227.
    H. T. Edwards and TESLA Collaboration, in Proc. 1993 IEEE Particle Accelerator Conf., IEEE, Piscataway, N.J. (1993), p. 537.

  7. 7. K. Takata, in Proc. 1993 IEEE Particle Accelerator Conf., IEEE, Piscataway, N.J. (1993), p. 207.
    V. Balakin, ibid, p. 243.
    R. Ruth, et al., ibid., p. 543.

  8. 8. V. L. Granatstein, C. D. Striffler, in Advanced Accelerator Concepts, AIP Conf. Proc. 279, J. S. Wurtele, ed., AIP, New York (1993), p. 16.

  9. 9. G. Loew, J. W. Wang, in Proc. 13th Int. Symp. on Discharges and Electrical Insulation in Vacuum, J. M. Buzzi, A. Septier, eds., Editions de Physique, Les Ulis, France (1988), p. 12.
    R. H. Miller et al., Int. J. Mod. Phys. A (Proc. Suppl.) 2B, 833 (1993).

  10. 10. A. M. Sessler, in Laser Acceleration of Particles, AIP Conf. Proc. 91, P. J. Channell, ed., AIP, New York (1982), p. 154.
    A. M. Sessler, D. H. Whittum, J. S. Wurtele, W. M. Sharp, M. A. Makowski, Nucl. Instrum. Methods Phys. Res. A 306, 592 (1991). https://doi.org/NIMAER
    J. S. Wurtele, D. H. Whittum, A. M. Sessler, Int. J. Mod. Phys. A (Proc. Suppl.) 2A, 508 (1993).
    W. Schnell, in Proc. ECFA Workshop on e+ e− Linear Colliders, MPI‐PHE/93/14, R. Settles, ed., Max Planck Institute, Munich, Germany (1993), p. 267.

  11. 11. CLIC Study Group, in Proc. 1993 IEEE Particle Accelerator Conf., IEEE, Piscataway, N.J. (1993), p. 540.

  12. 12. T. Tajima, J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979).https://doi.org/PRLTAO

  13. 13. P. Sprangle, E. Esarey, Phys. Fluids B 4, 2241 (1992). https://doi.org/PFBPEI
    J. S. Wurtele, Phys. Fluids B 5, 2363 (1993), and refs. therein.https://doi.org/PFBPEI

  14. 14. C. E. Clayton, K. A. Marsh, A. Dyson, M. Everett, A. Lal, W. P. Leemans, R. Williams, C. Joshi, Phys. Rev. Lett. 70, 37 (1993).https://doi.org/PRLTAO

  15. 15. H. Hamster, A. Sullivan, S. Gordon, R. W. Falcone, Phys. Rev. E 49, 671 (1994).https://doi.org/PLEEE8

  16. 16. T. Katsouleas, W. B. Mori, C. Decker, T. C. Chiou, J. S. Wurtele, G. Shvets, J. J. Su, in Proc. 1993 IEEE Particle Accelerator Conf., IEEE, Piscataway, N.J. (1993), p. 2635.

  17. 17. C. G. DurfeeIII, H. M. Milchberg, Phys. Rev. Lett. 71, 2409 (1993).https://doi.org/PRLTAO

  18. 18. G. Shvets, J. S. Wurtele, Bull. Am. Phys. Soc. 38, 1998 (1993).https://doi.org/BAPSA6

  19. 19. P. Chen, J. M. Dawson, R. W. Huff, T. Katsouleas, Phys. Rev. Lett. 54, 693 (1985). https://doi.org/PRLTAO
    R. D. Ruth, A. W. Chao, P. L. Morton, P. B. Wilson, Part. Accel. 17, 171 (1985). https://doi.org/PLACBD
    J. B. Rosenzweig, B. Breizman, T. Katsouleas, J. J. Su, Phys. Rev. A 44, R6189 (1991).

  20. 20. J. B. Rosenzweig, P. Schoessow, B. Cole, C. Ho, W. Gai, R. Konecny, S. Mtingwa, J. Norem, M. Rosing, J. Simpson, Phys. Fluids B 2, 1376 (1990). https://doi.org/PFBPEI
    A. Ogata, in Advanced Accelerator Concepts, AIP Conf. Proc. 279, J. S. Wurtele, ed., AIP, New York (1993), p. 420.

  21. 21. P. Chen, Part. Accel. 20, 171 (1985). https://doi.org/PLACBD
    H. Nakanishi et al., Phys. Rev. Lett. 66, 1870 (1991). https://doi.org/PRLTAO
    W. A. Barletta et al., in Proc. 1993 IEEE Particle Accelerator Conf., IEEE, Piscataway, N.J. (1993), p. 2683.
    G. Hairapetian, P. Davis, C. E. Clayton, C. Joshi, S. C. Hartman, C. Pellegrini, T. Katsouleas, Phys. Rev. Lett. 72, 2403 (1994).https://doi.org/PRLTAO

  22. 22. K. Oide, Phys. Rev. Lett. 61, 1713 (1988).https://doi.org/PRLTAO

  23. 23. P. Chen, K. Oide, A. M. Sessler, S. S. Yu, Phys. Rev. Lett. 64, 1231 (1990).

  24. 24. A. N. Skrinsky, in Proc. XX Int. Conf. on High Energy Physics, AIP Conf. Proc. 68, L. Durand, L. G. Pondrom, eds., AIP, New York (1980), p. 1056.
    D. Neuffer, Part. Accel. 14, 75 (1983). https://doi.org/PLACBD
    R. J. Noble, in Advanced Accelerator Concepts, AIP Conf. Proc. 279, J. S. Wurtele, ed., AIP, New York (1993), p. 949.

  25. 25. V. Telnov, Nucl. Instrum. Methods Phys. Res. A 294, 72 (1990). https://doi.org/NIMAER
    S. J. Brodsky, SLAC‐PUB‐6314, Stanford Linear Accelerator Center, Stanford, Calif. (1993).

More about the Authors

Jonathan S. Wurtele. Massachusetts Institute of Technology.

This Content Appeared In
pt-cover_1994_07.jpeg

Volume 47, Number 7

Related content
/
Article
Technical knowledge and skills are only some of the considerations that managers have when hiring physical scientists. Soft skills, in particular communication, are also high on the list.
/
Article
Professional societies can foster a sense of belonging and offer early-career scientists opportunities to give back to their community.
/
Article
Interviews offer a glimpse of how physicists get into—and thrive in—myriad nonacademic careers.
/
Article
Research exchanges between US and Soviet scientists during the second half of the 20th century may be instructive for navigating today’s debates on scientific collaboration.
/
Article
The Eisenhower administration dismissed the director of the National Bureau of Standards in 1953. Suspecting political interference with the agency’s research, scientists fought back—and won.
/
Article
Alternative undergraduate physics courses expand access to students and address socioeconomic barriers that prevent many of them from entering physics and engineering fields. The courses also help all students develop quantitative skills.

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.