Discover
/
Article

Advanced Accelerator Concepts

JUL 01, 1994
While near‐term ideas for e+e colliders range from superconducting linacs to ultrarelativistic klystrons, future particle physicists may collide multi‐TeV beams of particles accelerated by specially tailored plasmas.
Jonathan S. Wurtele

High‐energy accelerators have been physicists’ main tools for exploring the building blocks of matter for more than 60 years. During this time the particle energy has increased exponentially as a result of a combination of improvements in existing machines and the invention of new acceleration techniques. Historically, whenever a given type of accelerator has reached the limit of its performance, an innovative idea for particle manipulation, storage, cooling or acceleration has made possible experiments at ever higher energies. The tremendous increase in the energy of accelerators has not, however, been without an increase in capital costs. The cancellation of the Superconducting Super Collider makes timely an examination of possible alternative concepts for investigating some of the same physics.

This article is only available in PDF format

References

  1. 1. B. Richter, in The State of Particle Accelerators and High Energy Physics, AIP Conf. Proc. 92, R. A. Carrigan. F. R. Huson, M. Month, eds., AIP, New York, (1982), p. 43.
    J. T. Seeman, Annu. Rev. Nucl. Part. Sci. 41, 389 (1991).https://doi.org/ARPSDF

  2. 2. G. Loew, Beamline 22 (4), 21 (1992).
    R. H. Siemann, in Proc. 1993 IEEE Particle Accelerator Conf., IEEE, Piscataway, N.J. (1993), p. 532.

  3. 3. R. B. Palmer, Annu. Rev. Nucl. Part. Sci. 40, 529 (1990). https://doi.org/ARPSDF
    U. Amaldi, “Introduction to the Next Generation of Linear Colliders,” CERN‐EP/87‐28, CERN, Geneva, Switzerland (August 1987).
    M. Tigner, in Advanced Accelerator Concepts, AIP Conf. Proc. 279, J. S. Wurtele, ed., AIP, New York (1993), p. 1.

  4. 4. R. Blankenbecler, S. D. Drell, Phys. Rev. Lett. 61, 2324 (1988). https://doi.org/PRLTAO
    P. Chen, V. Telnov, Phys. Rev. Lett. 63, 1796 (1989).https://doi.org/PRLTAO

  5. 5. T. Weiland et al., in Proc. ECFA Workshop on e+e− Linear Colliders, MPI‐PHE/93/14, R. Settles, ed., Max Planck Institute, Munich, Germany (1993), p. 121.

  6. 6. M. Tigner, in Proc. ECFA Workshop on e+e− Linear Colliders, MPI‐PHE/93/14, R. Settles, ed., Max Planck Institute, Munich, Germany (1993), p. 227.
    H. T. Edwards and TESLA Collaboration, in Proc. 1993 IEEE Particle Accelerator Conf., IEEE, Piscataway, N.J. (1993), p. 537.

  7. 7. K. Takata, in Proc. 1993 IEEE Particle Accelerator Conf., IEEE, Piscataway, N.J. (1993), p. 207.
    V. Balakin, ibid, p. 243.
    R. Ruth, et al., ibid., p. 543.

  8. 8. V. L. Granatstein, C. D. Striffler, in Advanced Accelerator Concepts, AIP Conf. Proc. 279, J. S. Wurtele, ed., AIP, New York (1993), p. 16.

  9. 9. G. Loew, J. W. Wang, in Proc. 13th Int. Symp. on Discharges and Electrical Insulation in Vacuum, J. M. Buzzi, A. Septier, eds., Editions de Physique, Les Ulis, France (1988), p. 12.
    R. H. Miller et al., Int. J. Mod. Phys. A (Proc. Suppl.) 2B, 833 (1993).

  10. 10. A. M. Sessler, in Laser Acceleration of Particles, AIP Conf. Proc. 91, P. J. Channell, ed., AIP, New York (1982), p. 154.
    A. M. Sessler, D. H. Whittum, J. S. Wurtele, W. M. Sharp, M. A. Makowski, Nucl. Instrum. Methods Phys. Res. A 306, 592 (1991). https://doi.org/NIMAER
    J. S. Wurtele, D. H. Whittum, A. M. Sessler, Int. J. Mod. Phys. A (Proc. Suppl.) 2A, 508 (1993).
    W. Schnell, in Proc. ECFA Workshop on e+ e− Linear Colliders, MPI‐PHE/93/14, R. Settles, ed., Max Planck Institute, Munich, Germany (1993), p. 267.

  11. 11. CLIC Study Group, in Proc. 1993 IEEE Particle Accelerator Conf., IEEE, Piscataway, N.J. (1993), p. 540.

  12. 12. T. Tajima, J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979).https://doi.org/PRLTAO

  13. 13. P. Sprangle, E. Esarey, Phys. Fluids B 4, 2241 (1992). https://doi.org/PFBPEI
    J. S. Wurtele, Phys. Fluids B 5, 2363 (1993), and refs. therein.https://doi.org/PFBPEI

  14. 14. C. E. Clayton, K. A. Marsh, A. Dyson, M. Everett, A. Lal, W. P. Leemans, R. Williams, C. Joshi, Phys. Rev. Lett. 70, 37 (1993).https://doi.org/PRLTAO

  15. 15. H. Hamster, A. Sullivan, S. Gordon, R. W. Falcone, Phys. Rev. E 49, 671 (1994).https://doi.org/PLEEE8

  16. 16. T. Katsouleas, W. B. Mori, C. Decker, T. C. Chiou, J. S. Wurtele, G. Shvets, J. J. Su, in Proc. 1993 IEEE Particle Accelerator Conf., IEEE, Piscataway, N.J. (1993), p. 2635.

  17. 17. C. G. DurfeeIII, H. M. Milchberg, Phys. Rev. Lett. 71, 2409 (1993).https://doi.org/PRLTAO

  18. 18. G. Shvets, J. S. Wurtele, Bull. Am. Phys. Soc. 38, 1998 (1993).https://doi.org/BAPSA6

  19. 19. P. Chen, J. M. Dawson, R. W. Huff, T. Katsouleas, Phys. Rev. Lett. 54, 693 (1985). https://doi.org/PRLTAO
    R. D. Ruth, A. W. Chao, P. L. Morton, P. B. Wilson, Part. Accel. 17, 171 (1985). https://doi.org/PLACBD
    J. B. Rosenzweig, B. Breizman, T. Katsouleas, J. J. Su, Phys. Rev. A 44, R6189 (1991).

  20. 20. J. B. Rosenzweig, P. Schoessow, B. Cole, C. Ho, W. Gai, R. Konecny, S. Mtingwa, J. Norem, M. Rosing, J. Simpson, Phys. Fluids B 2, 1376 (1990). https://doi.org/PFBPEI
    A. Ogata, in Advanced Accelerator Concepts, AIP Conf. Proc. 279, J. S. Wurtele, ed., AIP, New York (1993), p. 420.

  21. 21. P. Chen, Part. Accel. 20, 171 (1985). https://doi.org/PLACBD
    H. Nakanishi et al., Phys. Rev. Lett. 66, 1870 (1991). https://doi.org/PRLTAO
    W. A. Barletta et al., in Proc. 1993 IEEE Particle Accelerator Conf., IEEE, Piscataway, N.J. (1993), p. 2683.
    G. Hairapetian, P. Davis, C. E. Clayton, C. Joshi, S. C. Hartman, C. Pellegrini, T. Katsouleas, Phys. Rev. Lett. 72, 2403 (1994).https://doi.org/PRLTAO

  22. 22. K. Oide, Phys. Rev. Lett. 61, 1713 (1988).https://doi.org/PRLTAO

  23. 23. P. Chen, K. Oide, A. M. Sessler, S. S. Yu, Phys. Rev. Lett. 64, 1231 (1990).

  24. 24. A. N. Skrinsky, in Proc. XX Int. Conf. on High Energy Physics, AIP Conf. Proc. 68, L. Durand, L. G. Pondrom, eds., AIP, New York (1980), p. 1056.
    D. Neuffer, Part. Accel. 14, 75 (1983). https://doi.org/PLACBD
    R. J. Noble, in Advanced Accelerator Concepts, AIP Conf. Proc. 279, J. S. Wurtele, ed., AIP, New York (1993), p. 949.

  25. 25. V. Telnov, Nucl. Instrum. Methods Phys. Res. A 294, 72 (1990). https://doi.org/NIMAER
    S. J. Brodsky, SLAC‐PUB‐6314, Stanford Linear Accelerator Center, Stanford, Calif. (1993).

More about the Authors

Jonathan S. Wurtele. Massachusetts Institute of Technology.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1994_07.jpeg

Volume 47, Number 7

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.