A resolution of the clock paradox
DOI: 10.1063/1.3022927
Ever since the initial successes of the theory of relativity, physicists and philosophers of science have written a great deal about a paradox that seems to arise when theory tries to answer the question: If two identical stationary clocks in the same inertial frame of reference are synchronized, and if one of them is accelerated away into different inertial frames and then returned to the original inertial frame, would the time readings of the clocks still be synchronized at this later rendezvous?
References
1. H. Arzelies, Relativistic Kinematics, Pergamon, New York (1966), chapter 8.
2. H. Reichenbach, The Philosophy of Space and Time, Dover, New York (1958).
3. A. Einstein, Ann. Phys. 17, 891 (1905).https://doi.org/ANPYA2
4. A. Einstein, Naturwiss. 6, 697 (1918).https://doi.org/NATWAY
5. H. Bergson, Duration and Simultaneity, Bobbs–Merrill (1965), Appendices 1–3.
6. H. Dingle, Nature 177, 782 (1956);
H. Dingle, 178, 680 (1956);
H. Dingle, 179, 865; 1129 (1957);
H. Dingle, 180, 500, 1275 (1957).7. M. Sachs, physics today, February 1969, page 51.
8. R. C. Tolman, Relativity, Thermodynamics and Cosmology, Oxford U.P., Oxford (1934), page 194.
9. A. S. Eddington, The Nature of the Physical World, Cambridge U.P., Cambridge (1929), page 135.
10. M. Sachs, Nuovo Cimento 47, 759 (1967);
M. Sachs, Nature 226, 138 (1970); https://doi.org/NATUAS
M. Sachs, Nuovo Cimento 66B, 137 (1970).11. M. Sachs, Nuovo Cimento 55B, 199 (1968).
More about the Authors
Mendel Sachs. State University of New York, Buffalo.