Discover
/
Article

A Different Approach to Cosmology

APR 01, 1999
In this unorthodox assault on mainstream cosmology, three venerable stalwarts argue for a quasi‐steady‐state universe, with some quasars quite nearby and no Big Bang.
Geoffrey Burbidge
Fred Hoyle
Jayant V. Narlikar

Modern cosmology began with the solutions to Einstein’s theory of gravity discovered by Aleksandr Friedmann and Georges Lemaitre in the 1920s. When combined with the Hubble redshift‐distance relation, these solutions could be interpreted as showing that we live in an expanding universe. By 1930, the scientific establishment and much of the lay public believed in this expanding cosmos. It then requires only time reversal and elementary logic to conclude that the universe must originally have been so compact that we can talk of a beginning. Lemaitre tried to describe this state as the “primeval atom.”

This article is only available in PDF format

References

  1. 1. R. Wagoner, W. Fowler, F. Hoyle, Ap. J. 148, 3 (1967).

  2. 2. R. Alpher, R. Herman, Rev. Mod. Phys. 22, 153 (1950).https://doi.org/RMPHAT

  3. 3. F. Hoyle, G. Burbidge, J. Narlikar. Astrophys. J. 410, 437 (1993);
    F. Hoyle, G. Burbidge, Mon. Not. R. Astron. Soc. 267, 1007 (1994); https://doi.org/MNRAA4
    F. Hoyle, G. Burbidge, Astron. Astrophys. 289, 729 (1994); https://doi.org/AAEJAF
    F. Hoyle, G. Burbidge, Proc. R. Soc. London Sec. A 448, 191 (1995).

  4. 4. G. Sears, Ann. NY Acad. Sci. 65, 388 (1957).
    F. Nabarro, P. Jackson, in Growth and Perfection in Crystals, R. Daramus, B. Roberts, D. Turnbull, eds., Wiley, New York 1958.

  5. 5. E. M. Burbidge, G. Burbidge, W. Fowler, F. Hoyle, Rev. Mod. Phys. 29, 547 (1957). https://doi.org/RMPHAT
    A. Cameron, Chalk River Nuclear Labs, Report CRL‐41, Chalk River, Ontario (1957).

  6. 6. G. Burbidge, F. Hoyle, Astrphys. J. Lett. 509, L1 (1998).

  7. 7. A. McKellar, Publ. Astron. Soc. Pac. 52, 407 (1940).https://doi.org/PASPAU

  8. 8. A. Cameron, W. Fowler, Astrophys. J. 104, 111 (1971).https://doi.org/ASJOAB

  9. 9. W. Sargent, J. Jugaku, Astrophys. J. 134, 777 (1961).https://doi.org/ASJOAB

  10. 10. E. Chupp, D. Forrest, P. Higbie, A. Suri, C. Tsai, P. Dunphy, Nature 241, 333 (1973).https://doi.org/NATUAS

  11. 11. A Life in Astrophysics—Selected Papers of V.A. Ambartsumian, Allerton, New York (1998).

  12. 12. V. A. Ambartsumian, in Solvay Conf. Reports, R. Stoops, ed., Brussels (1958);
    Trans. IAU 11bB, 145 (1962);
    in Proc. 13th Solvay Conf. on Physics, U. Brussels, P. Prigogine, ed., Wiley Intersciences, New York (1965), p. 1.

  13. 13. G. Burbidge, E. M. Burbidge, A. Sandage, Rev. Mod. Phys. 35, 947 (1963).https://doi.org/RMPHAT

  14. 14. J. Ostriker, J. Peebles, A. Yahil, Astrophys. J. 193, L1, (1974). https://doi.org/ASJOAB
    J. Einasto, A. Kansik, E. Saar, Nature 250, 319 (1974). https://doi.org/NATUAS
    G. Burbidge, Astrophys. J. 196, L7 (1975).https://doi.org/ASJOAB

  15. 15. W. A. Fowler, F. Hoyle, Mon. Not. R. Astron. Soc. 125, 169 (1963). https://doi.org/MNRAA4
    F. Hoyle, W. A. Fowler, G. Burbidge, E. M. Burbidge, Astrophys. J. 139, 909 (1964).https://doi.org/ASJOAB

  16. 16. G. Burbidge, in Proc. 13th Solvay Conf. on Physics, P. Prigogine, ed. Wiley Intersciences, New York (1965), p. 137.
    M. Rees, Annu. Rev. Astron. Astrophys. 22, 471 (1984).https://doi.org/ARAAAJ

  17. 17. E. M. Burbidge, G. Burbidge, P. Solomon, P. Strittmatter, Astrophys. J. 270, 233 (1971). https://doi.org/ASJOAB
    H. C. Arp. Quasars, Redshifts and Controversies, Interstellar Media, Berkeley, Calif. (1987).
    Y. Chu et al., Astron. Astrophys. 138, 408 (1984). https://doi.org/AAEJAF
    X. F. Zhu, Y. Q. Chu, Astron. Astrophys. 297, 300 (1995). https://doi.org/AAEJAF
    M. Bartelmann, P. Schneider, Astron. Astrophys. 271, 421 (1993); https://doi.org/AAEJAF
    M. Bartelmann, P. Schneider, 284, 1 (1994).
    G. Burbidge, Astron. Astrophys. 309, 9 (1996). This last paper lists all known associations of bright galaxies and quasars separated by less than 3 arcminutes.https://doi.org/AAEJAF

  18. 18. W. Pietsch, A. Vogler, P. Kahabka, A. Jain, V. Klein, Astron. Astrophys. 284, 386 (1994). https://doi.org/AAEJAF
    E. M. Burbidge, Astron. and Astrophys. 298, L1 (1995);
    E. M. Burbidge, Astrophys. J. Lett. 484, L99 (1997). https://doi.org/AJLEAU
    Y. Chu et al., Astrophys. J. Lett. 500, L596 (1998). https://doi.org/AJLEAU
    H. Radecke, Astron. Astrophys. 319, 18 (1997). https://doi.org/AAEJAF
    H. Arp, Astron. Astrophys. 319, 33 (1997).https://doi.org/AAEJAF

More about the Authors

Geoffrey Burbidge. University of California, San Diego.

Fred Hoyle. University of Cambridge.

Jayant V. Narlikar. Inter‐University Centre for Astronomy and Astrophysics, Pune, India.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1999_04.jpeg

Volume 52, Number 4

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.