100 Years of Photoemission
DOI: 10.1063/1.881150
With these words, Heinrich Hertz announced in 1887 the discovery of the photoelectric effect. Although he realized that the phenomenon was important, he certainly could not have imagined how fundamental its role in physics was to be over the next 100 years. Even now, many physicists do not completely understand that role. For example, the effect is often, but incorrectly, credited with leading Albert Einstein to the quantization of the electromagnetic field. Photoemission experiments actually made their most important contributions to field quantization after Einstein had formulated the theory, by demonstrating its validity.
References
1. H. Hertz, Ann. Phys. (Leipzig) 31, 983 (1887). https://doi.org/ANPYA2
Translated in H. Hertz, Electric Waves, McMillan, London (1900).2. Interesting historical reviews of the photoelectric effect, including many references to lesser known contributors, can be found in the following publications: F. K. Richtmyer, E. H. Kennard, T. Lauritsen, Introduction to Modern Physics, McGraw‐Hill‐Kogakusha, New York (1955);
M. Cardona, L. Ley, Photoemission in Solids, vol. I, Springer‐Verlag, Berlin (1978);
J. G. Jenkin, R. C. G. Leckey, J. Liesegang, J. Electron Spectrosc. 12, 1 (1977).3. J. J. Thomson, Philos. Mag. 48, 547 (1899).https://doi.org/PHMAA4
4. P. Lenard, Ann. Phys. (Leipzig) 2, 359 (1900); https://doi.org/ANPYA2
P. Lenard, 8, 149 (1902).
P. Lenard, Wien. Ber. 108, 1649 (1899).5. A. Einstein, Ann. Phys. (Leipzig) 17, 132 (1905).https://doi.org/ANPYA2
6. A. L. Hughes, Philos. Trans. R. Soc. London, Ser. A 212, 205 (1912). https://doi.org/PTRMAD
O. W. Richardson, K. T. Compton, Philos. Mag. 24, 575 (1912).https://doi.org/PHMAA47. R. A. Millikan, Phys. Rev. 7, 355 (1916).https://doi.org/PHRVAO
8. H. Robinson, W. F. Rawlinson, Philos. Mag. 28, 277 (1914).https://doi.org/PHMAA4
9. M. de Broglie, C. R. Acad. Sci. 172, 274 (1921).
10. K. T. Compton, L. W. Ross, Phys. Rev. 13, 374 (1919).https://doi.org/PHRVAO
11. K. H. Kingdon, I. Langmuir, Phys. Rev. 21, 380 (1923).https://doi.org/PHRVAO
12. L. R. Koller, Phys. Rev. B 36, 1639 (1930). https://doi.org/PRBMDO
N. R. Campbell, Philos. Mag. 12, 173 (1931).https://doi.org/PHMAA413. K. Siegbahn, C. Nordling, A. Fahlman, R. Nordberg, K. Hamrin, J. Hedman, G. Johansson, T. Bergmark, S.‐E. Karlsson, I. Lindgrenf, B. Lindberg, ESCA: Atomic, Molecular and Solid State Structure Studied by Means of Electron Spectroscopy, Almqvist & Wiksells, Uppsala (1967).
K. Siegbahn, C. Nordling, G. Johansson, J. Hedman, P. F. Heden, K. Hamrin, U. Gelius, T. Bergmark, L. O. Werme, R. Manne, Y. Baer, ESCA Applied to Free Molecules, North Holland, Amsterdam (1969).14. See, for example, W. E. Spicer, Phys. Rev. 112, 114 (1968).https://doi.org/PHRVAO
15. F. J. Himpsel, N. V. Smith, PHYSICS TODAY, December 1985, p. 60.
J. H. Weaver, PHYSICS TODAY, January 1986, p. 24.
R. S. Bauer, G. Margaritondo, PHYSICS TODAY, January 1987, p. 26.16. P. K. Larsen, G. Margaritondo, J. E. Rowe, M. Schluter, N. V. Smith, Phys. Lett. A 58, 623 (1976).https://doi.org/PYLAAG
More about the Authors
Giorgio Margaritondo. University of Wisconsin, Madison.